| 1 | gezelter | 1042 | /* | 
| 2 |  |  | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 |  |  | * | 
| 4 |  |  | * The University of Notre Dame grants you ("Licensee") a | 
| 5 |  |  | * non-exclusive, royalty free, license to use, modify and | 
| 6 |  |  | * redistribute this software in source and binary code form, provided | 
| 7 |  |  | * that the following conditions are met: | 
| 8 |  |  | * | 
| 9 | gezelter | 1390 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | gezelter | 1042 | *    notice, this list of conditions and the following disclaimer. | 
| 11 |  |  | * | 
| 12 | gezelter | 1390 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | gezelter | 1042 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 |  |  | *    documentation and/or other materials provided with the | 
| 15 |  |  | *    distribution. | 
| 16 |  |  | * | 
| 17 |  |  | * This software is provided "AS IS," without a warranty of any | 
| 18 |  |  | * kind. All express or implied conditions, representations and | 
| 19 |  |  | * warranties, including any implied warranty of merchantability, | 
| 20 |  |  | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 |  |  | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 |  |  | * be liable for any damages suffered by licensee as a result of | 
| 23 |  |  | * using, modifying or distributing the software or its | 
| 24 |  |  | * derivatives. In no event will the University of Notre Dame or its | 
| 25 |  |  | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 |  |  | * direct, indirect, special, consequential, incidental or punitive | 
| 27 |  |  | * damages, however caused and regardless of the theory of liability, | 
| 28 |  |  | * arising out of the use of or inability to use software, even if the | 
| 29 |  |  | * University of Notre Dame has been advised of the possibility of | 
| 30 |  |  | * such damages. | 
| 31 | gezelter | 1390 | * | 
| 32 |  |  | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 |  |  | * research, please cite the appropriate papers when you publish your | 
| 34 |  |  | * work.  Good starting points are: | 
| 35 |  |  | * | 
| 36 |  |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | gezelter | 1879 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | gezelter | 1782 | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 |  |  | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | gezelter | 1042 | */ | 
| 42 | gezelter | 1782 |  | 
| 43 |  |  | #include "config.h" | 
| 44 | gezelter | 1042 | #include <stdio.h> | 
| 45 | gezelter | 1051 | #include <cmath> | 
| 46 | gezelter | 1042 | #include <limits> | 
| 47 |  |  | #include "math/SphericalHarmonic.hpp" | 
| 48 |  |  | #include "utils/simError.h" | 
| 49 |  |  |  | 
| 50 | gezelter | 1390 | using namespace OpenMD; | 
| 51 | gezelter | 1042 |  | 
| 52 |  |  | SphericalHarmonic::SphericalHarmonic() { | 
| 53 |  |  | } | 
| 54 |  |  |  | 
| 55 |  |  | ComplexType SphericalHarmonic::getValueAt(RealType costheta, RealType phi) { | 
| 56 |  |  |  | 
| 57 |  |  | RealType p; | 
| 58 |  |  |  | 
| 59 |  |  | // associated Legendre polynomial | 
| 60 | gezelter | 1043 | p = Ptilde(L, M, costheta); | 
| 61 |  |  | ComplexType phase(0.0, (RealType)M * phi); | 
| 62 |  |  |  | 
| 63 |  |  | return exp(phase) * (ComplexType)p; | 
| 64 | gezelter | 1042 |  | 
| 65 |  |  | } | 
| 66 |  |  | // | 
| 67 | gezelter | 1043 | // Routine to calculate the associated Legendre polynomials for m>=0 | 
| 68 | gezelter | 1042 | // | 
| 69 | gezelter | 1043 | RealType SphericalHarmonic::LegendreP(int l,int m, RealType x) { | 
| 70 |  |  |  | 
| 71 | gezelter | 1879 | RealType result; | 
| 72 | gezelter | 1043 |  | 
| 73 |  |  | if (fabs(x) > 1.0) { | 
| 74 |  |  | printf("LegendreP: x out of range: l = %d\tm = %d\tx = %lf\n", l, m, x); | 
| 75 | gezelter | 1042 | return std::numeric_limits <RealType>:: quiet_NaN(); | 
| 76 |  |  | } | 
| 77 |  |  |  | 
| 78 | gezelter | 1043 | if (m>l) { | 
| 79 |  |  | printf("LegendreP: m > l: l = %d\tm = %d\tx = %lf\n", l, m, x); | 
| 80 |  |  | return std::numeric_limits <RealType>:: quiet_NaN(); | 
| 81 | gezelter | 1042 | } | 
| 82 | gezelter | 1043 |  | 
| 83 |  |  | if (m<0) { | 
| 84 |  |  | printf("LegendreP: m < 0: l = %d\tm = %d\tx = %lf\n", l, m, x); | 
| 85 |  |  | return std::numeric_limits <RealType>:: quiet_NaN(); | 
| 86 |  |  | } else { | 
| 87 | gezelter | 2071 | RealType temp1, temp2(0.0), temp3, temp4, temp5; | 
| 88 | gezelter | 1043 | temp3=1.0; | 
| 89 |  |  |  | 
| 90 |  |  | if (m>0) { | 
| 91 |  |  | temp1=sqrt(1.0-pow(x,2)); | 
| 92 |  |  | temp5 = 1.0; | 
| 93 | gezelter | 1879 | for (int i=1;i<=m;++i) { | 
| 94 | gezelter | 1043 | temp3 *= -temp5*temp1; | 
| 95 |  |  | temp5 += 2.0; | 
| 96 | gezelter | 1042 | } | 
| 97 |  |  | } | 
| 98 | gezelter | 1043 | if (l==m) { | 
| 99 |  |  | result = temp3; | 
| 100 |  |  | } else { | 
| 101 |  |  | temp4=x*(2.*m+1.)*temp3; | 
| 102 |  |  | if (l==(m+1)) { | 
| 103 |  |  | result = temp4; | 
| 104 |  |  | } else { | 
| 105 | gezelter | 1879 | for (int ll=(m+2);ll<=l;++ll) { | 
| 106 | gezelter | 1043 | temp2 = (x*(2.*ll-1.)*temp4-(ll+m-1.)*temp3)/(RealType)(ll-m); | 
| 107 |  |  | temp3=temp4; | 
| 108 |  |  | temp4=temp2; | 
| 109 |  |  | } | 
| 110 |  |  | result = temp2; | 
| 111 |  |  | } | 
| 112 |  |  | } | 
| 113 | gezelter | 1042 | } | 
| 114 | gezelter | 1043 | return result; | 
| 115 | gezelter | 1042 | } | 
| 116 |  |  |  | 
| 117 | gezelter | 1043 |  | 
| 118 | gezelter | 1042 | // | 
| 119 |  |  | // Routine to calculate the associated Legendre polynomials for all m... | 
| 120 |  |  | // | 
| 121 |  |  | RealType SphericalHarmonic::Legendre(int l, int m, RealType x)  { | 
| 122 |  |  | RealType result; | 
| 123 |  |  | if ( m>l || m <-l ) { | 
| 124 |  |  | printf("Legendre got a bad argument: l = %d\tm = %d\tx = %lf\n", l, m, x); | 
| 125 |  |  | return std::numeric_limits <RealType>:: quiet_NaN(); | 
| 126 |  |  | } else if (m >= 0) { | 
| 127 |  |  | result = LegendreP(l,m,x); | 
| 128 |  |  | } else { | 
| 129 | gezelter | 1043 | //result = mpow(-m)*LegendreP(l,-m,x); | 
| 130 | gezelter | 1042 | result = mpow(-m)*Fact(l+m)/Fact(l-m)*LegendreP(l, -m, x); | 
| 131 |  |  | } | 
| 132 |  |  | result *=mpow(m); | 
| 133 |  |  | return result; | 
| 134 |  |  | } | 
| 135 |  |  | // | 
| 136 | gezelter | 1043 | // Routine to calculate the normalized associated Legendre polynomials... | 
| 137 |  |  | // | 
| 138 |  |  | RealType SphericalHarmonic::Ptilde(int l,int m, RealType x){ | 
| 139 |  |  |  | 
| 140 |  |  | RealType result; | 
| 141 |  |  | if (m>l || m<-l) { | 
| 142 |  |  | result = 0.; | 
| 143 |  |  | } else { | 
| 144 |  |  | RealType y=(RealType)(2.*l+1.)*Fact(l-m)/Fact(l+m); | 
| 145 | gezelter | 1051 | result = mpow(m) * sqrt(y) * Legendre(l,m,x) / sqrt(4.0*M_PI); | 
| 146 | gezelter | 1043 | } | 
| 147 |  |  | return result; | 
| 148 |  |  | } | 
| 149 |  |  | // | 
| 150 | gezelter | 1042 | // mpow returns (-1)**m | 
| 151 |  |  | // | 
| 152 |  |  | RealType SphericalHarmonic::mpow(int m) { | 
| 153 |  |  | int result; | 
| 154 |  |  | if (m<0) m=-m; | 
| 155 |  |  | if (m & 0x1) result = -1; | 
| 156 |  |  | else result = 1; | 
| 157 |  |  | return result; | 
| 158 |  |  | } | 
| 159 |  |  | // | 
| 160 |  |  | // factorial_list is a lookup table for n! | 
| 161 |  |  | // | 
| 162 |  |  | static RealType factorial_list[171]= | 
| 163 |  |  | {1.,1.,2.,6.,24.,120.,720.,5040.,40320.,362880.,3.6288e6,3.99168e7,4.790016e8,6.2270208e9, | 
| 164 |  |  | 8.71782912e10,1.307674368e12,2.0922789888e13,3.55687428096e14,6.402373705728e15, | 
| 165 |  |  | 1.21645100408832e17, | 
| 166 |  |  | 2.43290200817664e18,5.109094217170944e19,1.1240007277776077e21,2.585201673888498e22, | 
| 167 |  |  | 6.204484017332394e23,1.5511210043330986e25,4.0329146112660565e26,1.0888869450418352e28, | 
| 168 |  |  | 3.0488834461171387e29,8.841761993739702e30,2.6525285981219107e32,8.222838654177922e33, | 
| 169 |  |  | 2.631308369336935e35,8.683317618811886e36,2.9523279903960416e38,1.0333147966386145e40, | 
| 170 |  |  | 3.7199332678990125e41,1.3763753091226346e43,5.230226174666011e44,2.0397882081197444e46, | 
| 171 |  |  | 8.159152832478977e47,3.345252661316381e49,1.40500611775288e51,6.041526306337383e52, | 
| 172 |  |  | 2.658271574788449e54,1.1962222086548019e56,5.502622159812089e57,2.5862324151116818e59, | 
| 173 |  |  | 1.2413915592536073e61,6.082818640342675e62,3.0414093201713376e64,1.5511187532873822e66, | 
| 174 |  |  | 8.065817517094388e67,4.2748832840600255e69,2.308436973392414e71,1.2696403353658276e73, | 
| 175 |  |  | 7.109985878048635e74,4.0526919504877214e76,2.3505613312828785e78,1.3868311854568984e80, | 
| 176 |  |  | 8.32098711274139e81,5.075802138772248e83,3.146997326038794e85,1.98260831540444e87, | 
| 177 |  |  | 1.2688693218588417e89,8.247650592082472e90,5.443449390774431e92,3.647111091818868e94, | 
| 178 |  |  | 2.4800355424368305e96,1.711224524281413e98,1.1978571669969892e100,8.504785885678623e101, | 
| 179 |  |  | 6.1234458376886085e103,4.4701154615126844e105,3.307885441519386e107,2.48091408113954e109, | 
| 180 |  |  | 1.8854947016660504e111,1.4518309202828587e113,1.1324281178206297e115,8.946182130782976e116, | 
| 181 |  |  | 7.156945704626381e118,5.797126020747368e120,4.753643337012842e122,3.945523969720659e124, | 
| 182 |  |  | 3.314240134565353e126,2.81710411438055e128,2.4227095383672734e130,2.107757298379528e132, | 
| 183 |  |  | 1.8548264225739844e134,1.650795516090846e136,1.4857159644817615e138,1.352001527678403e140, | 
| 184 |  |  | 1.2438414054641308e142,1.1567725070816416e144,1.087366156656743e146,1.032997848823906e148, | 
| 185 |  |  | 9.916779348709496e149,9.619275968248212e151,9.426890448883248e153,9.332621544394415e155, | 
| 186 |  |  | 9.332621544394415e157,9.42594775983836e159,9.614466715035127e161,9.90290071648618e163, | 
| 187 |  |  | 1.0299016745145628e166,1.081396758240291e168,1.1462805637347084e170,1.226520203196138e172, | 
| 188 |  |  | 1.324641819451829e174,1.4438595832024937e176,1.588245541522743e178,1.7629525510902446e180, | 
| 189 |  |  | 1.974506857221074e182,2.2311927486598138e184,2.5435597334721877e186,2.925093693493016e188, | 
| 190 |  |  | 3.393108684451898e190,3.969937160808721e192,4.684525849754291e194,5.574585761207606e196, | 
| 191 |  |  | 6.689502913449127e198,8.094298525273444e200,9.875044200833601e202,1.214630436702533e205, | 
| 192 |  |  | 1.506141741511141e207,1.882677176888926e209,2.372173242880047e211,3.0126600184576594e213, | 
| 193 |  |  | 3.856204823625804e215,4.974504222477287e217,6.466855489220474e219,8.47158069087882e221, | 
| 194 |  |  | 1.1182486511960043e224,1.4872707060906857e226,1.9929427461615188e228,2.6904727073180504e230, | 
| 195 |  |  | 3.659042881952549e232,5.012888748274992e234,6.917786472619489e236,9.615723196941089e238, | 
| 196 |  |  | 1.3462012475717526e241,1.898143759076171e243,2.695364137888163e245,3.854370717180073e247, | 
| 197 |  |  | 5.5502938327393044e249,8.047926057471992e251,1.1749972043909107e254,1.727245890454639e256, | 
| 198 |  |  | 2.5563239178728654e258,3.80892263763057e260,5.713383956445855e262,8.62720977423324e264, | 
| 199 |  |  | 1.3113358856834524e267,2.0063439050956823e269,3.0897696138473508e271,4.789142901463394e273, | 
| 200 |  |  | 7.471062926282894e275,1.1729568794264145e278,1.853271869493735e280,2.9467022724950384e282, | 
| 201 |  |  | 4.7147236359920616e284,7.590705053947219e286,1.2296942187394494e289,2.0044015765453026e291, | 
| 202 |  |  | 3.287218585534296e293,5.423910666131589e295,9.003691705778438e297,1.503616514864999e300, | 
| 203 |  |  | 2.5260757449731984e302,4.269068009004705e304,7.257415615307999e306}; | 
| 204 |  |  |  | 
| 205 |  |  | // | 
| 206 |  |  | // Routine to return the factorial of j | 
| 207 |  |  | // | 
| 208 |  |  | RealType SphericalHarmonic::Fact(int j) { | 
| 209 |  |  | if (j <= 170 && j>=0) return factorial_list[j]; | 
| 210 |  |  |  | 
| 211 |  |  | sprintf( painCave.errMsg, | 
| 212 |  |  | "Fact(j) for j >= 171\n"); | 
| 213 |  |  | painCave.isFatal = 0; | 
| 214 |  |  | simError(); | 
| 215 |  |  | return 0.; | 
| 216 |  |  | } |