| 6 | 
  | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
  | 
 * that the following conditions are met: | 
| 8 | 
  | 
 * | 
| 9 | 
< | 
 * 1. Acknowledgement of the program authors must be made in any | 
| 10 | 
< | 
 *    publication of scientific results based in part on use of the | 
| 11 | 
< | 
 *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | 
< | 
 *    the article in which the program was described (Matthew | 
| 13 | 
< | 
 *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | 
< | 
 *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | 
< | 
 *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | 
< | 
 *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | 
< | 
 * | 
| 18 | 
< | 
 * 2. Redistributions of source code must retain the above copyright | 
| 9 | 
> | 
 * 1. Redistributions of source code must retain the above copyright | 
| 10 | 
  | 
 *    notice, this list of conditions and the following disclaimer. | 
| 11 | 
  | 
 * | 
| 12 | 
< | 
 * 3. Redistributions in binary form must reproduce the above copyright | 
| 12 | 
> | 
 * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | 
  | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 14 | 
  | 
 *    documentation and/or other materials provided with the | 
| 15 | 
  | 
 *    distribution. | 
| 28 | 
  | 
 * arising out of the use of or inability to use software, even if the | 
| 29 | 
  | 
 * University of Notre Dame has been advised of the possibility of | 
| 30 | 
  | 
 * such damages. | 
| 31 | 
+ | 
 * | 
| 32 | 
+ | 
 * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | 
+ | 
 * research, please cite the appropriate papers when you publish your | 
| 34 | 
+ | 
 * work.  Good starting points are: | 
| 35 | 
+ | 
 *                                                                       | 
| 36 | 
+ | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
+ | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
+ | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).           | 
| 39 | 
+ | 
 * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | 
+ | 
 * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | 
  | 
 */ | 
| 42 | 
< | 
  | 
| 42 | 
> | 
 | 
| 43 | 
> | 
#include "config.h" | 
| 44 | 
  | 
#include <stdio.h> | 
| 45 | 
+ | 
#include <cmath> | 
| 46 | 
  | 
#include <limits> | 
| 47 | 
  | 
#include "math/SphericalHarmonic.hpp" | 
| 48 | 
  | 
#include "utils/simError.h" | 
| 49 | 
  | 
 | 
| 50 | 
< | 
using namespace oopse; | 
| 50 | 
> | 
using namespace OpenMD; | 
| 51 | 
  | 
 | 
| 52 | 
  | 
SphericalHarmonic::SphericalHarmonic() { | 
| 53 | 
  | 
} | 
| 55 | 
  | 
ComplexType SphericalHarmonic::getValueAt(RealType costheta, RealType phi) { | 
| 56 | 
  | 
   | 
| 57 | 
  | 
  RealType p; | 
| 55 | 
– | 
  ComplexType phase; | 
| 56 | 
– | 
  ComplexType I(0.0, 1.0); | 
| 58 | 
  | 
   | 
| 59 | 
  | 
  // associated Legendre polynomial | 
| 60 | 
< | 
  p = Legendre(L, M, costheta); | 
| 61 | 
< | 
  | 
| 62 | 
< | 
  phase = exp(I * (ComplexType)M * (ComplexType)phi); | 
| 63 | 
< | 
     | 
| 63 | 
< | 
  return coefficient * phase * (ComplexType)p; | 
| 60 | 
> | 
  p = Ptilde(L, M, costheta); | 
| 61 | 
> | 
  ComplexType phase(0.0, (RealType)M * phi);     | 
| 62 | 
> | 
 | 
| 63 | 
> | 
  return exp(phase) * (ComplexType)p; | 
| 64 | 
  | 
   | 
| 65 | 
  | 
} | 
| 66 | 
– | 
 | 
| 67 | 
– | 
//---------------------------------------------------------------------------// | 
| 66 | 
  | 
// | 
| 67 | 
< | 
// RealType LegendreP (int l, int m, RealType x); | 
| 67 | 
> | 
// Routine to calculate the associated Legendre polynomials for m>=0 | 
| 68 | 
  | 
// | 
| 69 | 
< | 
// Computes the value of the associated Legendre polynomial P_lm (x) | 
| 70 | 
< | 
// of order l at a given point. | 
| 71 | 
< | 
// | 
| 72 | 
< | 
// Input: | 
| 73 | 
< | 
//   l  = degree of the polynomial  >= 0 | 
| 74 | 
< | 
//   m  = parameter satisfying 0 <= m <= l, | 
| 77 | 
< | 
//   x  = point in which the computation is performed, range -1 <= x <= 1. | 
| 78 | 
< | 
// Returns: | 
| 79 | 
< | 
//   value of the polynomial in x | 
| 80 | 
< | 
// | 
| 81 | 
< | 
//---------------------------------------------------------------------------// | 
| 82 | 
< | 
RealType SphericalHarmonic::LegendreP (int l, int m, RealType x) { | 
| 83 | 
< | 
  // check parameters | 
| 84 | 
< | 
  if (m < 0 || m > l || fabs(x) > 1.0) { | 
| 85 | 
< | 
    printf("LegendreP got a bad argument: l = %d\tm = %d\tx = %lf\n", l, m, x); | 
| 69 | 
> | 
RealType SphericalHarmonic::LegendreP(int l,int m, RealType x) { | 
| 70 | 
> | 
 | 
| 71 | 
> | 
  RealType result; | 
| 72 | 
> | 
   | 
| 73 | 
> | 
  if (fabs(x) > 1.0) { | 
| 74 | 
> | 
    printf("LegendreP: x out of range: l = %d\tm = %d\tx = %lf\n", l, m, x); | 
| 75 | 
  | 
    return std::numeric_limits <RealType>:: quiet_NaN(); | 
| 76 | 
  | 
  } | 
| 77 | 
  | 
   | 
| 78 | 
< | 
  RealType pmm = 1.0; | 
| 79 | 
< | 
  if (m > 0) { | 
| 80 | 
< | 
    RealType h = sqrt((1.0-x)*(1.0+x)), | 
| 92 | 
< | 
      f = 1.0; | 
| 93 | 
< | 
    for (int i = 1; i <= m; i++) { | 
| 94 | 
< | 
      pmm *= -f * h; | 
| 95 | 
< | 
      f += 2.0; | 
| 96 | 
< | 
    } | 
| 78 | 
> | 
  if (m>l) { | 
| 79 | 
> | 
    printf("LegendreP: m > l: l = %d\tm = %d\tx = %lf\n", l, m, x); | 
| 80 | 
> | 
    return std::numeric_limits <RealType>:: quiet_NaN(); | 
| 81 | 
  | 
  } | 
| 82 | 
< | 
  if (l == m) | 
| 83 | 
< | 
    return pmm; | 
| 84 | 
< | 
  else { | 
| 85 | 
< | 
    RealType pmmp1 = x * (2 * m + 1) * pmm; | 
| 86 | 
< | 
    if (l == (m+1)) | 
| 87 | 
< | 
      return pmmp1; | 
| 88 | 
< | 
    else { | 
| 89 | 
< | 
      RealType pll = 0.0; | 
| 90 | 
< | 
      for (int ll = m+2; ll <= l; ll++) { | 
| 91 | 
< | 
        pll = (x * (2 * ll - 1) * pmmp1 - (ll + m - 1) * pmm) / (ll - m); | 
| 92 | 
< | 
        pmm = pmmp1; | 
| 93 | 
< | 
        pmmp1 = pll; | 
| 82 | 
> | 
     | 
| 83 | 
> | 
  if (m<0) {  | 
| 84 | 
> | 
    printf("LegendreP: m < 0: l = %d\tm = %d\tx = %lf\n", l, m, x); | 
| 85 | 
> | 
    return std::numeric_limits <RealType>:: quiet_NaN(); | 
| 86 | 
> | 
  } else { | 
| 87 | 
> | 
    RealType temp1, temp2, temp3, temp4, temp5; | 
| 88 | 
> | 
    temp3=1.0; | 
| 89 | 
> | 
     | 
| 90 | 
> | 
    if (m>0) { | 
| 91 | 
> | 
      temp1=sqrt(1.0-pow(x,2)); | 
| 92 | 
> | 
      temp5 = 1.0; | 
| 93 | 
> | 
      for (int i=1;i<=m;++i) { | 
| 94 | 
> | 
        temp3 *= -temp5*temp1; | 
| 95 | 
> | 
        temp5 += 2.0; | 
| 96 | 
  | 
      } | 
| 111 | 
– | 
      return pll; | 
| 97 | 
  | 
    } | 
| 98 | 
+ | 
    if (l==m) { | 
| 99 | 
+ | 
      result = temp3; | 
| 100 | 
+ | 
    } else { | 
| 101 | 
+ | 
      temp4=x*(2.*m+1.)*temp3; | 
| 102 | 
+ | 
      if (l==(m+1)) { | 
| 103 | 
+ | 
        result = temp4; | 
| 104 | 
+ | 
      } else { | 
| 105 | 
+ | 
        for (int ll=(m+2);ll<=l;++ll) { | 
| 106 | 
+ | 
          temp2 = (x*(2.*ll-1.)*temp4-(ll+m-1.)*temp3)/(RealType)(ll-m); | 
| 107 | 
+ | 
          temp3=temp4; | 
| 108 | 
+ | 
          temp4=temp2; | 
| 109 | 
+ | 
        } | 
| 110 | 
+ | 
        result = temp2; | 
| 111 | 
+ | 
      } | 
| 112 | 
+ | 
    } | 
| 113 | 
  | 
  } | 
| 114 | 
+ | 
  return result; | 
| 115 | 
  | 
} | 
| 116 | 
  | 
 | 
| 117 | 
+ | 
 | 
| 118 | 
  | 
// | 
| 119 | 
  | 
// Routine to calculate the associated Legendre polynomials for all m... | 
| 120 | 
  | 
// | 
| 126 | 
  | 
  } else if (m >= 0) { | 
| 127 | 
  | 
    result = LegendreP(l,m,x); | 
| 128 | 
  | 
  } else { | 
| 129 | 
+ | 
    //result = mpow(-m)*LegendreP(l,-m,x); | 
| 130 | 
  | 
    result = mpow(-m)*Fact(l+m)/Fact(l-m)*LegendreP(l, -m, x); | 
| 131 | 
  | 
  } | 
| 132 | 
  | 
  result *=mpow(m); | 
| 133 | 
  | 
  return result; | 
| 134 | 
  | 
} | 
| 135 | 
  | 
// | 
| 136 | 
+ | 
// Routine to calculate the normalized associated Legendre polynomials... | 
| 137 | 
+ | 
// | 
| 138 | 
+ | 
RealType SphericalHarmonic::Ptilde(int l,int m, RealType x){ | 
| 139 | 
+ | 
 | 
| 140 | 
+ | 
  RealType result; | 
| 141 | 
+ | 
  if (m>l || m<-l) { | 
| 142 | 
+ | 
    result = 0.; | 
| 143 | 
+ | 
  } else { | 
| 144 | 
+ | 
    RealType y=(RealType)(2.*l+1.)*Fact(l-m)/Fact(l+m); | 
| 145 | 
+ | 
    result = mpow(m) * sqrt(y) * Legendre(l,m,x) / sqrt(4.0*M_PI); | 
| 146 | 
+ | 
  } | 
| 147 | 
+ | 
  return result; | 
| 148 | 
+ | 
} | 
| 149 | 
+ | 
// | 
| 150 | 
  | 
// mpow returns (-1)**m | 
| 151 | 
  | 
// | 
| 152 | 
  | 
RealType SphericalHarmonic::mpow(int m) { |