| 52 |  | ComplexType SphericalHarmonic::getValueAt(RealType costheta, RealType phi) { | 
| 53 |  |  | 
| 54 |  | RealType p; | 
| 55 | – | ComplexType phase; | 
| 56 | – | ComplexType I(0.0, 1.0); | 
| 55 |  |  | 
| 56 |  | // associated Legendre polynomial | 
| 57 | < | p = Legendre(L, M, costheta); | 
| 58 | < |  | 
| 59 | < | phase = exp(I * (ComplexType)M * (ComplexType)phi); | 
| 60 | < |  | 
| 63 | < | return coefficient * phase * (ComplexType)p; | 
| 57 | > | p = Ptilde(L, M, costheta); | 
| 58 | > | ComplexType phase(0.0, (RealType)M * phi); | 
| 59 | > |  | 
| 60 | > | return exp(phase) * (ComplexType)p; | 
| 61 |  |  | 
| 62 |  | } | 
| 66 | – |  | 
| 67 | – | //---------------------------------------------------------------------------// | 
| 63 |  | // | 
| 64 | < | // RealType LegendreP (int l, int m, RealType x); | 
| 64 | > | // Routine to calculate the associated Legendre polynomials for m>=0 | 
| 65 |  | // | 
| 66 | < | // Computes the value of the associated Legendre polynomial P_lm (x) | 
| 67 | < | // of order l at a given point. | 
| 68 | < | // | 
| 69 | < | // Input: | 
| 70 | < | //   l  = degree of the polynomial  >= 0 | 
| 71 | < | //   m  = parameter satisfying 0 <= m <= l, | 
| 72 | < | //   x  = point in which the computation is performed, range -1 <= x <= 1. | 
| 73 | < | // Returns: | 
| 79 | < | //   value of the polynomial in x | 
| 80 | < | // | 
| 81 | < | //---------------------------------------------------------------------------// | 
| 82 | < | RealType SphericalHarmonic::LegendreP (int l, int m, RealType x) { | 
| 83 | < | // check parameters | 
| 84 | < | if (m < 0 || m > l || fabs(x) > 1.0) { | 
| 85 | < | printf("LegendreP got a bad argument: l = %d\tm = %d\tx = %lf\n", l, m, x); | 
| 66 | > | RealType SphericalHarmonic::LegendreP(int l,int m, RealType x) { | 
| 67 | > |  | 
| 68 | > | RealType temp1, temp2, temp3, temp4, result; | 
| 69 | > | RealType temp5; | 
| 70 | > | int i, ll; | 
| 71 | > |  | 
| 72 | > | if (fabs(x) > 1.0) { | 
| 73 | > | printf("LegendreP: x out of range: l = %d\tm = %d\tx = %lf\n", l, m, x); | 
| 74 |  | return std::numeric_limits <RealType>:: quiet_NaN(); | 
| 75 |  | } | 
| 76 |  |  | 
| 77 | < | RealType pmm = 1.0; | 
| 78 | < | if (m > 0) { | 
| 79 | < | RealType h = sqrt((1.0-x)*(1.0+x)), | 
| 92 | < | f = 1.0; | 
| 93 | < | for (int i = 1; i <= m; i++) { | 
| 94 | < | pmm *= -f * h; | 
| 95 | < | f += 2.0; | 
| 96 | < | } | 
| 77 | > | if (m>l) { | 
| 78 | > | printf("LegendreP: m > l: l = %d\tm = %d\tx = %lf\n", l, m, x); | 
| 79 | > | return std::numeric_limits <RealType>:: quiet_NaN(); | 
| 80 |  | } | 
| 81 | < | if (l == m) | 
| 82 | < | return pmm; | 
| 83 | < | else { | 
| 84 | < | RealType pmmp1 = x * (2 * m + 1) * pmm; | 
| 85 | < | if (l == (m+1)) | 
| 86 | < | return pmmp1; | 
| 87 | < | else { | 
| 88 | < | RealType pll = 0.0; | 
| 89 | < | for (int ll = m+2; ll <= l; ll++) { | 
| 90 | < | pll = (x * (2 * ll - 1) * pmmp1 - (ll + m - 1) * pmm) / (ll - m); | 
| 91 | < | pmm = pmmp1; | 
| 92 | < | pmmp1 = pll; | 
| 81 | > |  | 
| 82 | > | if (m<0) { | 
| 83 | > | printf("LegendreP: m < 0: l = %d\tm = %d\tx = %lf\n", l, m, x); | 
| 84 | > | return std::numeric_limits <RealType>:: quiet_NaN(); | 
| 85 | > | } else { | 
| 86 | > | temp3=1.0; | 
| 87 | > |  | 
| 88 | > | if (m>0) { | 
| 89 | > | temp1=sqrt(1.0-pow(x,2)); | 
| 90 | > | temp5 = 1.0; | 
| 91 | > | for (i=1;i<=m;++i) { | 
| 92 | > | temp3 *= -temp5*temp1; | 
| 93 | > | temp5 += 2.0; | 
| 94 |  | } | 
| 111 | – | return pll; | 
| 95 |  | } | 
| 96 | + | if (l==m) { | 
| 97 | + | result = temp3; | 
| 98 | + | } else { | 
| 99 | + | temp4=x*(2.*m+1.)*temp3; | 
| 100 | + | if (l==(m+1)) { | 
| 101 | + | result = temp4; | 
| 102 | + | } else { | 
| 103 | + | for (ll=(m+2);ll<=l;++ll) { | 
| 104 | + | temp2 = (x*(2.*ll-1.)*temp4-(ll+m-1.)*temp3)/(RealType)(ll-m); | 
| 105 | + | temp3=temp4; | 
| 106 | + | temp4=temp2; | 
| 107 | + | } | 
| 108 | + | result = temp2; | 
| 109 | + | } | 
| 110 | + | } | 
| 111 |  | } | 
| 112 | + | return result; | 
| 113 |  | } | 
| 114 |  |  | 
| 115 | + |  | 
| 116 |  | // | 
| 117 |  | // Routine to calculate the associated Legendre polynomials for all m... | 
| 118 |  | // | 
| 124 |  | } else if (m >= 0) { | 
| 125 |  | result = LegendreP(l,m,x); | 
| 126 |  | } else { | 
| 127 | + | //result = mpow(-m)*LegendreP(l,-m,x); | 
| 128 |  | result = mpow(-m)*Fact(l+m)/Fact(l-m)*LegendreP(l, -m, x); | 
| 129 |  | } | 
| 130 |  | result *=mpow(m); | 
| 131 |  | return result; | 
| 132 |  | } | 
| 133 |  | // | 
| 134 | + | // Routine to calculate the normalized associated Legendre polynomials... | 
| 135 | + | // | 
| 136 | + | RealType SphericalHarmonic::Ptilde(int l,int m, RealType x){ | 
| 137 | + |  | 
| 138 | + | RealType result; | 
| 139 | + | if (m>l || m<-l) { | 
| 140 | + | result = 0.; | 
| 141 | + | } else { | 
| 142 | + | RealType y=(RealType)(2.*l+1.)*Fact(l-m)/Fact(l+m); | 
| 143 | + | result = sqrt(y) * Legendre(l,m,x); | 
| 144 | + | } | 
| 145 | + | return result; | 
| 146 | + | } | 
| 147 | + | // | 
| 148 |  | // mpow returns (-1)**m | 
| 149 |  | // | 
| 150 |  | RealType SphericalHarmonic::mpow(int m) { |