| 6 |  | * redistribute this software in source and binary code form, provided | 
| 7 |  | * that the following conditions are met: | 
| 8 |  | * | 
| 9 | < | * 1. Acknowledgement of the program authors must be made in any | 
| 10 | < | *    publication of scientific results based in part on use of the | 
| 11 | < | *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | < | *    the article in which the program was described (Matthew | 
| 13 | < | *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | < | *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | < | *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | < | *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | < | * | 
| 18 | < | * 2. Redistributions of source code must retain the above copyright | 
| 9 | > | * 1. Redistributions of source code must retain the above copyright | 
| 10 |  | *    notice, this list of conditions and the following disclaimer. | 
| 11 |  | * | 
| 12 | < | * 3. Redistributions in binary form must reproduce the above copyright | 
| 12 | > | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 |  | *    notice, this list of conditions and the following disclaimer in the | 
| 14 |  | *    documentation and/or other materials provided with the | 
| 15 |  | *    distribution. | 
| 28 |  | * arising out of the use of or inability to use software, even if the | 
| 29 |  | * University of Notre Dame has been advised of the possibility of | 
| 30 |  | * such damages. | 
| 31 | + | * | 
| 32 | + | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | + | * research, please cite the appropriate papers when you publish your | 
| 34 | + | * work.  Good starting points are: | 
| 35 | + | * | 
| 36 | + | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | + | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | + | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | + | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | + | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  | */ | 
| 42 | < |  | 
| 42 | > |  | 
| 43 | > | #include "config.h" | 
| 44 |  | #include <stdio.h> | 
| 45 | + | #include <cmath> | 
| 46 |  | #include <limits> | 
| 47 |  | #include "math/SphericalHarmonic.hpp" | 
| 48 |  | #include "utils/simError.h" | 
| 49 |  |  | 
| 50 | < | using namespace oopse; | 
| 50 | > | using namespace OpenMD; | 
| 51 |  |  | 
| 52 |  | SphericalHarmonic::SphericalHarmonic() { | 
| 53 |  | } | 
| 55 |  | ComplexType SphericalHarmonic::getValueAt(RealType costheta, RealType phi) { | 
| 56 |  |  | 
| 57 |  | RealType p; | 
| 55 | – | ComplexType phase; | 
| 56 | – | ComplexType I(0.0, 1.0); | 
| 58 |  |  | 
| 59 |  | // associated Legendre polynomial | 
| 60 | < | p = Legendre(L, M, costheta); | 
| 61 | < |  | 
| 62 | < | phase = exp(I * (ComplexType)M * (ComplexType)phi); | 
| 63 | < |  | 
| 63 | < | return coefficient * phase * (ComplexType)p; | 
| 60 | > | p = Ptilde(L, M, costheta); | 
| 61 | > | ComplexType phase(0.0, (RealType)M * phi); | 
| 62 | > |  | 
| 63 | > | return exp(phase) * (ComplexType)p; | 
| 64 |  |  | 
| 65 |  | } | 
| 66 | – |  | 
| 67 | – | //---------------------------------------------------------------------------// | 
| 66 |  | // | 
| 67 | < | // RealType LegendreP (int l, int m, RealType x); | 
| 67 | > | // Routine to calculate the associated Legendre polynomials for m>=0 | 
| 68 |  | // | 
| 69 | < | // Computes the value of the associated Legendre polynomial P_lm (x) | 
| 70 | < | // of order l at a given point. | 
| 71 | < | // | 
| 72 | < | // Input: | 
| 73 | < | //   l  = degree of the polynomial  >= 0 | 
| 74 | < | //   m  = parameter satisfying 0 <= m <= l, | 
| 77 | < | //   x  = point in which the computation is performed, range -1 <= x <= 1. | 
| 78 | < | // Returns: | 
| 79 | < | //   value of the polynomial in x | 
| 80 | < | // | 
| 81 | < | //---------------------------------------------------------------------------// | 
| 82 | < | RealType SphericalHarmonic::LegendreP (int l, int m, RealType x) { | 
| 83 | < | // check parameters | 
| 84 | < | if (m < 0 || m > l || fabs(x) > 1.0) { | 
| 85 | < | printf("LegendreP got a bad argument: l = %d\tm = %d\tx = %lf\n", l, m, x); | 
| 69 | > | RealType SphericalHarmonic::LegendreP(int l,int m, RealType x) { | 
| 70 | > |  | 
| 71 | > | RealType result; | 
| 72 | > |  | 
| 73 | > | if (fabs(x) > 1.0) { | 
| 74 | > | printf("LegendreP: x out of range: l = %d\tm = %d\tx = %lf\n", l, m, x); | 
| 75 |  | return std::numeric_limits <RealType>:: quiet_NaN(); | 
| 76 |  | } | 
| 77 |  |  | 
| 78 | < | RealType pmm = 1.0; | 
| 79 | < | if (m > 0) { | 
| 80 | < | RealType h = sqrt((1.0-x)*(1.0+x)), | 
| 92 | < | f = 1.0; | 
| 93 | < | for (int i = 1; i <= m; i++) { | 
| 94 | < | pmm *= -f * h; | 
| 95 | < | f += 2.0; | 
| 96 | < | } | 
| 78 | > | if (m>l) { | 
| 79 | > | printf("LegendreP: m > l: l = %d\tm = %d\tx = %lf\n", l, m, x); | 
| 80 | > | return std::numeric_limits <RealType>:: quiet_NaN(); | 
| 81 |  | } | 
| 82 | < | if (l == m) | 
| 83 | < | return pmm; | 
| 84 | < | else { | 
| 85 | < | RealType pmmp1 = x * (2 * m + 1) * pmm; | 
| 86 | < | if (l == (m+1)) | 
| 87 | < | return pmmp1; | 
| 88 | < | else { | 
| 89 | < | RealType pll = 0.0; | 
| 90 | < | for (int ll = m+2; ll <= l; ll++) { | 
| 91 | < | pll = (x * (2 * ll - 1) * pmmp1 - (ll + m - 1) * pmm) / (ll - m); | 
| 92 | < | pmm = pmmp1; | 
| 93 | < | pmmp1 = pll; | 
| 82 | > |  | 
| 83 | > | if (m<0) { | 
| 84 | > | printf("LegendreP: m < 0: l = %d\tm = %d\tx = %lf\n", l, m, x); | 
| 85 | > | return std::numeric_limits <RealType>:: quiet_NaN(); | 
| 86 | > | } else { | 
| 87 | > | RealType temp1, temp2(0.0), temp3, temp4, temp5; | 
| 88 | > | temp3=1.0; | 
| 89 | > |  | 
| 90 | > | if (m>0) { | 
| 91 | > | temp1=sqrt(1.0-pow(x,2)); | 
| 92 | > | temp5 = 1.0; | 
| 93 | > | for (int i=1;i<=m;++i) { | 
| 94 | > | temp3 *= -temp5*temp1; | 
| 95 | > | temp5 += 2.0; | 
| 96 |  | } | 
| 111 | – | return pll; | 
| 97 |  | } | 
| 98 | + | if (l==m) { | 
| 99 | + | result = temp3; | 
| 100 | + | } else { | 
| 101 | + | temp4=x*(2.*m+1.)*temp3; | 
| 102 | + | if (l==(m+1)) { | 
| 103 | + | result = temp4; | 
| 104 | + | } else { | 
| 105 | + | for (int ll=(m+2);ll<=l;++ll) { | 
| 106 | + | temp2 = (x*(2.*ll-1.)*temp4-(ll+m-1.)*temp3)/(RealType)(ll-m); | 
| 107 | + | temp3=temp4; | 
| 108 | + | temp4=temp2; | 
| 109 | + | } | 
| 110 | + | result = temp2; | 
| 111 | + | } | 
| 112 | + | } | 
| 113 |  | } | 
| 114 | + | return result; | 
| 115 |  | } | 
| 116 |  |  | 
| 117 | + |  | 
| 118 |  | // | 
| 119 |  | // Routine to calculate the associated Legendre polynomials for all m... | 
| 120 |  | // | 
| 126 |  | } else if (m >= 0) { | 
| 127 |  | result = LegendreP(l,m,x); | 
| 128 |  | } else { | 
| 129 | + | //result = mpow(-m)*LegendreP(l,-m,x); | 
| 130 |  | result = mpow(-m)*Fact(l+m)/Fact(l-m)*LegendreP(l, -m, x); | 
| 131 |  | } | 
| 132 |  | result *=mpow(m); | 
| 133 |  | return result; | 
| 134 |  | } | 
| 135 |  | // | 
| 136 | + | // Routine to calculate the normalized associated Legendre polynomials... | 
| 137 | + | // | 
| 138 | + | RealType SphericalHarmonic::Ptilde(int l,int m, RealType x){ | 
| 139 | + |  | 
| 140 | + | RealType result; | 
| 141 | + | if (m>l || m<-l) { | 
| 142 | + | result = 0.; | 
| 143 | + | } else { | 
| 144 | + | RealType y=(RealType)(2.*l+1.)*Fact(l-m)/Fact(l+m); | 
| 145 | + | result = mpow(m) * sqrt(y) * Legendre(l,m,x) / sqrt(4.0*M_PI); | 
| 146 | + | } | 
| 147 | + | return result; | 
| 148 | + | } | 
| 149 | + | // | 
| 150 |  | // mpow returns (-1)**m | 
| 151 |  | // | 
| 152 |  | RealType SphericalHarmonic::mpow(int m) { |