| 6 | 
  | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
  | 
 * that the following conditions are met: | 
| 8 | 
  | 
 * | 
| 9 | 
< | 
 * 1. Acknowledgement of the program authors must be made in any | 
| 10 | 
< | 
 *    publication of scientific results based in part on use of the | 
| 11 | 
< | 
 *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | 
< | 
 *    the article in which the program was described (Matthew | 
| 13 | 
< | 
 *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | 
< | 
 *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | 
< | 
 *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | 
< | 
 *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | 
< | 
 * | 
| 18 | 
< | 
 * 2. Redistributions of source code must retain the above copyright | 
| 9 | 
> | 
 * 1. Redistributions of source code must retain the above copyright | 
| 10 | 
  | 
 *    notice, this list of conditions and the following disclaimer. | 
| 11 | 
  | 
 * | 
| 12 | 
< | 
 * 3. Redistributions in binary form must reproduce the above copyright | 
| 12 | 
> | 
 * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | 
  | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 14 | 
  | 
 *    documentation and/or other materials provided with the | 
| 15 | 
  | 
 *    distribution. | 
| 28 | 
  | 
 * arising out of the use of or inability to use software, even if the | 
| 29 | 
  | 
 * University of Notre Dame has been advised of the possibility of | 
| 30 | 
  | 
 * such damages. | 
| 31 | 
+ | 
 * | 
| 32 | 
+ | 
 * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | 
+ | 
 * research, please cite the appropriate papers when you publish your | 
| 34 | 
+ | 
 * work.  Good starting points are: | 
| 35 | 
+ | 
 *                                                                       | 
| 36 | 
+ | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
+ | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
+ | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).           | 
| 39 | 
+ | 
 * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | 
+ | 
 * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | 
  | 
 */ | 
| 42 | 
< | 
  | 
| 42 | 
> | 
 | 
| 43 | 
> | 
#include "config.h" | 
| 44 | 
  | 
#include <stdio.h> | 
| 45 | 
+ | 
#include <cmath> | 
| 46 | 
  | 
#include <limits> | 
| 47 | 
  | 
#include "math/SphericalHarmonic.hpp" | 
| 48 | 
  | 
#include "utils/simError.h" | 
| 49 | 
  | 
 | 
| 50 | 
< | 
using namespace oopse; | 
| 50 | 
> | 
using namespace OpenMD; | 
| 51 | 
  | 
 | 
| 52 | 
  | 
SphericalHarmonic::SphericalHarmonic() { | 
| 53 | 
  | 
} | 
| 68 | 
  | 
// | 
| 69 | 
  | 
RealType SphericalHarmonic::LegendreP(int l,int m, RealType x) { | 
| 70 | 
  | 
 | 
| 71 | 
< | 
  RealType temp1, temp2, temp3, temp4, result; | 
| 69 | 
< | 
  RealType temp5; | 
| 70 | 
< | 
  int i, ll; | 
| 71 | 
> | 
  RealType result; | 
| 72 | 
  | 
   | 
| 73 | 
  | 
  if (fabs(x) > 1.0) { | 
| 74 | 
  | 
    printf("LegendreP: x out of range: l = %d\tm = %d\tx = %lf\n", l, m, x); | 
| 84 | 
  | 
    printf("LegendreP: m < 0: l = %d\tm = %d\tx = %lf\n", l, m, x); | 
| 85 | 
  | 
    return std::numeric_limits <RealType>:: quiet_NaN(); | 
| 86 | 
  | 
  } else { | 
| 87 | 
+ | 
    RealType temp1, temp2(0.0), temp3, temp4, temp5; | 
| 88 | 
  | 
    temp3=1.0; | 
| 89 | 
  | 
     | 
| 90 | 
  | 
    if (m>0) { | 
| 91 | 
  | 
      temp1=sqrt(1.0-pow(x,2)); | 
| 92 | 
  | 
      temp5 = 1.0; | 
| 93 | 
< | 
      for (i=1;i<=m;++i) { | 
| 93 | 
> | 
      for (int i=1;i<=m;++i) { | 
| 94 | 
  | 
        temp3 *= -temp5*temp1; | 
| 95 | 
  | 
        temp5 += 2.0; | 
| 96 | 
  | 
      } | 
| 102 | 
  | 
      if (l==(m+1)) { | 
| 103 | 
  | 
        result = temp4; | 
| 104 | 
  | 
      } else { | 
| 105 | 
< | 
        for (ll=(m+2);ll<=l;++ll) { | 
| 105 | 
> | 
        for (int ll=(m+2);ll<=l;++ll) { | 
| 106 | 
  | 
          temp2 = (x*(2.*ll-1.)*temp4-(ll+m-1.)*temp3)/(RealType)(ll-m); | 
| 107 | 
  | 
          temp3=temp4; | 
| 108 | 
  | 
          temp4=temp2; | 
| 142 | 
  | 
    result = 0.; | 
| 143 | 
  | 
  } else { | 
| 144 | 
  | 
    RealType y=(RealType)(2.*l+1.)*Fact(l-m)/Fact(l+m); | 
| 145 | 
< | 
    result = sqrt(y) * Legendre(l,m,x); | 
| 145 | 
> | 
    result = mpow(m) * sqrt(y) * Legendre(l,m,x) / sqrt(4.0*M_PI); | 
| 146 | 
  | 
  } | 
| 147 | 
  | 
  return result; | 
| 148 | 
  | 
} |