| 1 | tim | 70 | /* | 
| 2 |  |  | * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project | 
| 3 |  |  | * | 
| 4 |  |  | * Contact: oopse@oopse.org | 
| 5 |  |  | * | 
| 6 |  |  | * This program is free software; you can redistribute it and/or | 
| 7 |  |  | * modify it under the terms of the GNU Lesser General Public License | 
| 8 |  |  | * as published by the Free Software Foundation; either version 2.1 | 
| 9 |  |  | * of the License, or (at your option) any later version. | 
| 10 |  |  | * All we ask is that proper credit is given for our work, which includes | 
| 11 |  |  | * - but is not limited to - adding the above copyright notice to the beginning | 
| 12 |  |  | * of your source code files, and to any copyright notice that you may distribute | 
| 13 |  |  | * with programs based on this work. | 
| 14 |  |  | * | 
| 15 |  |  | * This program is distributed in the hope that it will be useful, | 
| 16 |  |  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 17 |  |  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| 18 |  |  | * GNU Lesser General Public License for more details. | 
| 19 |  |  | * | 
| 20 |  |  | * You should have received a copy of the GNU Lesser General Public License | 
| 21 |  |  | * along with this program; if not, write to the Free Software | 
| 22 |  |  | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA. | 
| 23 |  |  | * | 
| 24 |  |  | */ | 
| 25 |  |  |  | 
| 26 |  |  | /** | 
| 27 |  |  | * @file SquareMatrix.hpp | 
| 28 |  |  | * @author Teng Lin | 
| 29 |  |  | * @date 10/11/2004 | 
| 30 |  |  | * @version 1.0 | 
| 31 |  |  | */ | 
| 32 | tim | 123 | #ifndef MATH_SQUAREMATRIX_HPP | 
| 33 | tim | 70 | #define MATH_SQUAREMATRIX_HPP | 
| 34 |  |  |  | 
| 35 | tim | 74 | #include "math/RectMatrix.hpp" | 
| 36 | tim | 70 |  | 
| 37 |  |  | namespace oopse { | 
| 38 |  |  |  | 
| 39 |  |  | /** | 
| 40 |  |  | * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp" | 
| 41 |  |  | * @brief A square matrix class | 
| 42 |  |  | * @template Real the element type | 
| 43 |  |  | * @template Dim the dimension of the square matrix | 
| 44 |  |  | */ | 
| 45 |  |  | template<typename Real, int Dim> | 
| 46 | tim | 74 | class SquareMatrix : public RectMatrix<Real, Dim, Dim> { | 
| 47 | tim | 70 | public: | 
| 48 | tim | 137 | typedef Real ElemType; | 
| 49 |  |  | typedef Real* ElemPoinerType; | 
| 50 | tim | 70 |  | 
| 51 | tim | 137 | /** default constructor */ | 
| 52 |  |  | SquareMatrix() { | 
| 53 |  |  | for (unsigned int i = 0; i < Dim; i++) | 
| 54 |  |  | for (unsigned int j = 0; j < Dim; j++) | 
| 55 |  |  | data_[i][j] = 0.0; | 
| 56 |  |  | } | 
| 57 | tim | 70 |  | 
| 58 | tim | 137 | /** copy constructor */ | 
| 59 |  |  | SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) { | 
| 60 |  |  | } | 
| 61 | tim | 70 |  | 
| 62 | tim | 137 | /** copy assignment operator */ | 
| 63 |  |  | SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) { | 
| 64 |  |  | RectMatrix<Real, Dim, Dim>::operator=(m); | 
| 65 |  |  | return *this; | 
| 66 |  |  | } | 
| 67 |  |  |  | 
| 68 |  |  | /** Retunrs  an identity matrix*/ | 
| 69 | tim | 74 |  | 
| 70 | tim | 137 | static SquareMatrix<Real, Dim> identity() { | 
| 71 |  |  | SquareMatrix<Real, Dim> m; | 
| 72 |  |  |  | 
| 73 |  |  | for (unsigned int i = 0; i < Dim; i++) | 
| 74 |  |  | for (unsigned int j = 0; j < Dim; j++) | 
| 75 |  |  | if (i == j) | 
| 76 |  |  | m(i, j) = 1.0; | 
| 77 |  |  | else | 
| 78 |  |  | m(i, j) = 0.0; | 
| 79 | tim | 70 |  | 
| 80 | tim | 137 | return m; | 
| 81 |  |  | } | 
| 82 | tim | 74 |  | 
| 83 | tim | 137 | /** | 
| 84 |  |  | * Retunrs  the inversion of this matrix. | 
| 85 |  |  | * @todo need implementation | 
| 86 |  |  | */ | 
| 87 |  |  | SquareMatrix<Real, Dim>  inverse() { | 
| 88 |  |  | SquareMatrix<Real, Dim> result; | 
| 89 | tim | 70 |  | 
| 90 | tim | 137 | return result; | 
| 91 |  |  | } | 
| 92 | tim | 70 |  | 
| 93 | tim | 137 | /** | 
| 94 |  |  | * Returns the determinant of this matrix. | 
| 95 |  |  | * @todo need implementation | 
| 96 |  |  | */ | 
| 97 |  |  | Real determinant() const { | 
| 98 |  |  | Real det; | 
| 99 |  |  | return det; | 
| 100 |  |  | } | 
| 101 | tim | 70 |  | 
| 102 | tim | 137 | /** Returns the trace of this matrix. */ | 
| 103 |  |  | Real trace() const { | 
| 104 |  |  | Real tmp = 0; | 
| 105 |  |  |  | 
| 106 |  |  | for (unsigned int i = 0; i < Dim ; i++) | 
| 107 |  |  | tmp += data_[i][i]; | 
| 108 | tim | 70 |  | 
| 109 | tim | 137 | return tmp; | 
| 110 |  |  | } | 
| 111 | tim | 70 |  | 
| 112 | tim | 137 | /** Tests if this matrix is symmetrix. */ | 
| 113 |  |  | bool isSymmetric() const { | 
| 114 |  |  | for (unsigned int i = 0; i < Dim - 1; i++) | 
| 115 |  |  | for (unsigned int j = i; j < Dim; j++) | 
| 116 |  |  | if (fabs(data_[i][j] - data_[j][i]) > oopse::epsilon) | 
| 117 |  |  | return false; | 
| 118 |  |  |  | 
| 119 |  |  | return true; | 
| 120 |  |  | } | 
| 121 | tim | 70 |  | 
| 122 | tim | 137 | /** Tests if this matrix is orthogonal. */ | 
| 123 |  |  | bool isOrthogonal() { | 
| 124 |  |  | SquareMatrix<Real, Dim> tmp; | 
| 125 | tim | 70 |  | 
| 126 | tim | 137 | tmp = *this * transpose(); | 
| 127 | tim | 70 |  | 
| 128 | tim | 137 | return tmp.isDiagonal(); | 
| 129 |  |  | } | 
| 130 | tim | 70 |  | 
| 131 | tim | 137 | /** Tests if this matrix is diagonal. */ | 
| 132 |  |  | bool isDiagonal() const { | 
| 133 |  |  | for (unsigned int i = 0; i < Dim ; i++) | 
| 134 |  |  | for (unsigned int j = 0; j < Dim; j++) | 
| 135 |  |  | if (i !=j && fabs(data_[i][j]) > oopse::epsilon) | 
| 136 |  |  | return false; | 
| 137 |  |  |  | 
| 138 |  |  | return true; | 
| 139 |  |  | } | 
| 140 |  |  |  | 
| 141 |  |  | /** Tests if this matrix is the unit matrix. */ | 
| 142 |  |  | bool isUnitMatrix() const { | 
| 143 |  |  | if (!isDiagonal()) | 
| 144 | tim | 70 | return false; | 
| 145 |  |  |  | 
| 146 | tim | 137 | for (unsigned int i = 0; i < Dim ; i++) | 
| 147 |  |  | if (fabs(data_[i][i] - 1) > oopse::epsilon) | 
| 148 |  |  | return false; | 
| 149 |  |  |  | 
| 150 |  |  | return true; | 
| 151 |  |  | } | 
| 152 | tim | 70 |  | 
| 153 | tim | 137 | /** @todo need implementation */ | 
| 154 |  |  | void diagonalize() { | 
| 155 |  |  | //jacobi(m, eigenValues, ortMat); | 
| 156 |  |  | } | 
| 157 | tim | 76 |  | 
| 158 | tim | 137 | /** | 
| 159 |  |  | * Jacobi iteration routines for computing eigenvalues/eigenvectors of | 
| 160 |  |  | * real symmetric matrix | 
| 161 |  |  | * | 
| 162 |  |  | * @return true if success, otherwise return false | 
| 163 |  |  | * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is | 
| 164 |  |  | *     overwritten | 
| 165 |  |  | * @param w will contain the eigenvalues of the matrix On return of this function | 
| 166 |  |  | * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are | 
| 167 |  |  | *    normalized and mutually orthogonal. | 
| 168 |  |  | */ | 
| 169 |  |  |  | 
| 170 |  |  | static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d, | 
| 171 |  |  | SquareMatrix<Real, Dim>& v); | 
| 172 | tim | 70 | };//end SquareMatrix | 
| 173 |  |  |  | 
| 174 | tim | 76 |  | 
| 175 | tim | 123 | /*========================================================================= | 
| 176 | tim | 76 |  | 
| 177 | tim | 123 | Program:   Visualization Toolkit | 
| 178 |  |  | Module:    $RCSfile: SquareMatrix.hpp,v $ | 
| 179 | tim | 76 |  | 
| 180 | tim | 123 | Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen | 
| 181 |  |  | All rights reserved. | 
| 182 |  |  | See Copyright.txt or http://www.kitware.com/Copyright.htm for details. | 
| 183 |  |  |  | 
| 184 |  |  | This software is distributed WITHOUT ANY WARRANTY; without even | 
| 185 |  |  | the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR | 
| 186 |  |  | PURPOSE.  See the above copyright notice for more information. | 
| 187 |  |  |  | 
| 188 |  |  | =========================================================================*/ | 
| 189 |  |  |  | 
| 190 |  |  | #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau);\ | 
| 191 |  |  | a(k, l)=h+s*(g-h*tau) | 
| 192 |  |  |  | 
| 193 |  |  | #define VTK_MAX_ROTATIONS 20 | 
| 194 |  |  |  | 
| 195 |  |  | // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn | 
| 196 |  |  | // real symmetric matrix. Square nxn matrix a; size of matrix in n; | 
| 197 |  |  | // output eigenvalues in w; and output eigenvectors in v. Resulting | 
| 198 |  |  | // eigenvalues/vectors are sorted in decreasing order; eigenvectors are | 
| 199 |  |  | // normalized. | 
| 200 |  |  | template<typename Real, int Dim> | 
| 201 |  |  | int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w, | 
| 202 |  |  | SquareMatrix<Real, Dim>& v) { | 
| 203 |  |  | const int n = Dim; | 
| 204 |  |  | int i, j, k, iq, ip, numPos; | 
| 205 |  |  | Real tresh, theta, tau, t, sm, s, h, g, c, tmp; | 
| 206 |  |  | Real bspace[4], zspace[4]; | 
| 207 |  |  | Real *b = bspace; | 
| 208 |  |  | Real *z = zspace; | 
| 209 |  |  |  | 
| 210 |  |  | // only allocate memory if the matrix is large | 
| 211 |  |  | if (n > 4) | 
| 212 |  |  | { | 
| 213 |  |  | b = new Real[n]; | 
| 214 |  |  | z = new Real[n]; | 
| 215 |  |  | } | 
| 216 |  |  |  | 
| 217 |  |  | // initialize | 
| 218 |  |  | for (ip=0; ip<n; ip++) | 
| 219 |  |  | { | 
| 220 |  |  | for (iq=0; iq<n; iq++) | 
| 221 |  |  | { | 
| 222 |  |  | v(ip, iq) = 0.0; | 
| 223 |  |  | } | 
| 224 | tim | 93 | v(ip, ip) = 1.0; | 
| 225 | tim | 123 | } | 
| 226 |  |  | for (ip=0; ip<n; ip++) | 
| 227 |  |  | { | 
| 228 |  |  | b[ip] = w[ip] = a(ip, ip); | 
| 229 |  |  | z[ip] = 0.0; | 
| 230 |  |  | } | 
| 231 | tim | 76 |  | 
| 232 | tim | 123 | // begin rotation sequence | 
| 233 |  |  | for (i=0; i<VTK_MAX_ROTATIONS; i++) | 
| 234 |  |  | { | 
| 235 | tim | 93 | sm = 0.0; | 
| 236 | tim | 123 | for (ip=0; ip<n-1; ip++) | 
| 237 |  |  | { | 
| 238 |  |  | for (iq=ip+1; iq<n; iq++) | 
| 239 |  |  | { | 
| 240 |  |  | sm += fabs(a(ip, iq)); | 
| 241 |  |  | } | 
| 242 |  |  | } | 
| 243 | tim | 93 | if (sm == 0.0) | 
| 244 | tim | 123 | { | 
| 245 |  |  | break; | 
| 246 |  |  | } | 
| 247 | tim | 76 |  | 
| 248 | tim | 123 | if (i < 3)                                // first 3 sweeps | 
| 249 |  |  | { | 
| 250 |  |  | tresh = 0.2*sm/(n*n); | 
| 251 |  |  | } | 
| 252 | tim | 93 | else | 
| 253 | tim | 123 | { | 
| 254 |  |  | tresh = 0.0; | 
| 255 |  |  | } | 
| 256 | tim | 76 |  | 
| 257 | tim | 123 | for (ip=0; ip<n-1; ip++) | 
| 258 |  |  | { | 
| 259 |  |  | for (iq=ip+1; iq<n; iq++) | 
| 260 |  |  | { | 
| 261 |  |  | g = 100.0*fabs(a(ip, iq)); | 
| 262 | tim | 76 |  | 
| 263 | tim | 123 | // after 4 sweeps | 
| 264 |  |  | if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip]) | 
| 265 |  |  | && (fabs(w[iq])+g) == fabs(w[iq])) | 
| 266 |  |  | { | 
| 267 |  |  | a(ip, iq) = 0.0; | 
| 268 |  |  | } | 
| 269 |  |  | else if (fabs(a(ip, iq)) > tresh) | 
| 270 |  |  | { | 
| 271 |  |  | h = w[iq] - w[ip]; | 
| 272 |  |  | if ( (fabs(h)+g) == fabs(h)) | 
| 273 |  |  | { | 
| 274 |  |  | t = (a(ip, iq)) / h; | 
| 275 |  |  | } | 
| 276 |  |  | else | 
| 277 |  |  | { | 
| 278 |  |  | theta = 0.5*h / (a(ip, iq)); | 
| 279 |  |  | t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta)); | 
| 280 |  |  | if (theta < 0.0) | 
| 281 |  |  | { | 
| 282 |  |  | t = -t; | 
| 283 |  |  | } | 
| 284 |  |  | } | 
| 285 |  |  | c = 1.0 / sqrt(1+t*t); | 
| 286 |  |  | s = t*c; | 
| 287 |  |  | tau = s/(1.0+c); | 
| 288 |  |  | h = t*a(ip, iq); | 
| 289 |  |  | z[ip] -= h; | 
| 290 |  |  | z[iq] += h; | 
| 291 |  |  | w[ip] -= h; | 
| 292 |  |  | w[iq] += h; | 
| 293 |  |  | a(ip, iq)=0.0; | 
| 294 | tim | 76 |  | 
| 295 | tim | 123 | // ip already shifted left by 1 unit | 
| 296 |  |  | for (j = 0;j <= ip-1;j++) | 
| 297 |  |  | { | 
| 298 |  |  | VTK_ROTATE(a,j,ip,j,iq); | 
| 299 | tim | 93 | } | 
| 300 | tim | 123 | // ip and iq already shifted left by 1 unit | 
| 301 |  |  | for (j = ip+1;j <= iq-1;j++) | 
| 302 |  |  | { | 
| 303 |  |  | VTK_ROTATE(a,ip,j,j,iq); | 
| 304 |  |  | } | 
| 305 |  |  | // iq already shifted left by 1 unit | 
| 306 |  |  | for (j=iq+1; j<n; j++) | 
| 307 |  |  | { | 
| 308 |  |  | VTK_ROTATE(a,ip,j,iq,j); | 
| 309 |  |  | } | 
| 310 |  |  | for (j=0; j<n; j++) | 
| 311 |  |  | { | 
| 312 |  |  | VTK_ROTATE(v,j,ip,j,iq); | 
| 313 |  |  | } | 
| 314 |  |  | } | 
| 315 | tim | 93 | } | 
| 316 | tim | 123 | } | 
| 317 | tim | 93 |  | 
| 318 | tim | 123 | for (ip=0; ip<n; ip++) | 
| 319 |  |  | { | 
| 320 |  |  | b[ip] += z[ip]; | 
| 321 |  |  | w[ip] = b[ip]; | 
| 322 |  |  | z[ip] = 0.0; | 
| 323 |  |  | } | 
| 324 | tim | 93 | } | 
| 325 |  |  |  | 
| 326 | tim | 123 | //// this is NEVER called | 
| 327 |  |  | if ( i >= VTK_MAX_ROTATIONS ) | 
| 328 |  |  | { | 
| 329 |  |  | std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl; | 
| 330 |  |  | return 0; | 
| 331 |  |  | } | 
| 332 | tim | 76 |  | 
| 333 | tim | 123 | // sort eigenfunctions                 these changes do not affect accuracy | 
| 334 |  |  | for (j=0; j<n-1; j++)                  // boundary incorrect | 
| 335 |  |  | { | 
| 336 | tim | 93 | k = j; | 
| 337 | tim | 123 | tmp = w[k]; | 
| 338 |  |  | for (i=j+1; i<n; i++)                // boundary incorrect, shifted already | 
| 339 |  |  | { | 
| 340 |  |  | if (w[i] >= tmp)                   // why exchage if same? | 
| 341 |  |  | { | 
| 342 | tim | 93 | k = i; | 
| 343 | tim | 123 | tmp = w[k]; | 
| 344 | tim | 93 | } | 
| 345 | tim | 123 | } | 
| 346 |  |  | if (k != j) | 
| 347 |  |  | { | 
| 348 |  |  | w[k] = w[j]; | 
| 349 |  |  | w[j] = tmp; | 
| 350 |  |  | for (i=0; i<n; i++) | 
| 351 |  |  | { | 
| 352 |  |  | tmp = v(i, j); | 
| 353 |  |  | v(i, j) = v(i, k); | 
| 354 |  |  | v(i, k) = tmp; | 
| 355 |  |  | } | 
| 356 |  |  | } | 
| 357 | tim | 93 | } | 
| 358 | tim | 123 | // insure eigenvector consistency (i.e., Jacobi can compute vectors that | 
| 359 |  |  | // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can | 
| 360 |  |  | // reek havoc in hyperstreamline/other stuff. We will select the most | 
| 361 |  |  | // positive eigenvector. | 
| 362 |  |  | int ceil_half_n = (n >> 1) + (n & 1); | 
| 363 |  |  | for (j=0; j<n; j++) | 
| 364 |  |  | { | 
| 365 |  |  | for (numPos=0, i=0; i<n; i++) | 
| 366 |  |  | { | 
| 367 |  |  | if ( v(i, j) >= 0.0 ) | 
| 368 |  |  | { | 
| 369 |  |  | numPos++; | 
| 370 | tim | 93 | } | 
| 371 | tim | 123 | } | 
| 372 |  |  | //    if ( numPos < ceil(double(n)/double(2.0)) ) | 
| 373 |  |  | if ( numPos < ceil_half_n) | 
| 374 |  |  | { | 
| 375 |  |  | for(i=0; i<n; i++) | 
| 376 |  |  | { | 
| 377 |  |  | v(i, j) *= -1.0; | 
| 378 |  |  | } | 
| 379 |  |  | } | 
| 380 | tim | 93 | } | 
| 381 | tim | 76 |  | 
| 382 | tim | 123 | if (n > 4) | 
| 383 |  |  | { | 
| 384 |  |  | delete [] b; | 
| 385 |  |  | delete [] z; | 
| 386 |  |  | } | 
| 387 |  |  | return 1; | 
| 388 | tim | 76 | } | 
| 389 |  |  |  | 
| 390 |  |  |  | 
| 391 |  |  | } | 
| 392 | tim | 123 | #endif //MATH_SQUAREMATRIX_HPP | 
| 393 | tim | 76 |  |