| 1 | tim | 70 | /* | 
| 2 |  |  | * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project | 
| 3 |  |  | * | 
| 4 |  |  | * Contact: oopse@oopse.org | 
| 5 |  |  | * | 
| 6 |  |  | * This program is free software; you can redistribute it and/or | 
| 7 |  |  | * modify it under the terms of the GNU Lesser General Public License | 
| 8 |  |  | * as published by the Free Software Foundation; either version 2.1 | 
| 9 |  |  | * of the License, or (at your option) any later version. | 
| 10 |  |  | * All we ask is that proper credit is given for our work, which includes | 
| 11 |  |  | * - but is not limited to - adding the above copyright notice to the beginning | 
| 12 |  |  | * of your source code files, and to any copyright notice that you may distribute | 
| 13 |  |  | * with programs based on this work. | 
| 14 |  |  | * | 
| 15 |  |  | * This program is distributed in the hope that it will be useful, | 
| 16 |  |  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 17 |  |  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| 18 |  |  | * GNU Lesser General Public License for more details. | 
| 19 |  |  | * | 
| 20 |  |  | * You should have received a copy of the GNU Lesser General Public License | 
| 21 |  |  | * along with this program; if not, write to the Free Software | 
| 22 |  |  | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA. | 
| 23 |  |  | * | 
| 24 |  |  | */ | 
| 25 |  |  |  | 
| 26 |  |  | /** | 
| 27 |  |  | * @file SquareMatrix.hpp | 
| 28 |  |  | * @author Teng Lin | 
| 29 |  |  | * @date 10/11/2004 | 
| 30 |  |  | * @version 1.0 | 
| 31 |  |  | */ | 
| 32 |  |  | #ifndef MATH_SQUAREMATRIX_HPP | 
| 33 |  |  | #define MATH_SQUAREMATRIX_HPP | 
| 34 |  |  |  | 
| 35 | tim | 74 | #include "math/RectMatrix.hpp" | 
| 36 | tim | 70 |  | 
| 37 |  |  | namespace oopse { | 
| 38 |  |  |  | 
| 39 |  |  | /** | 
| 40 |  |  | * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp" | 
| 41 |  |  | * @brief A square matrix class | 
| 42 |  |  | * @template Real the element type | 
| 43 |  |  | * @template Dim the dimension of the square matrix | 
| 44 |  |  | */ | 
| 45 |  |  | template<typename Real, int Dim> | 
| 46 | tim | 74 | class SquareMatrix : public RectMatrix<Real, Dim, Dim> { | 
| 47 | tim | 70 | public: | 
| 48 |  |  |  | 
| 49 |  |  | /** default constructor */ | 
| 50 |  |  | SquareMatrix() { | 
| 51 |  |  | for (unsigned int i = 0; i < Dim; i++) | 
| 52 |  |  | for (unsigned int j = 0; j < Dim; j++) | 
| 53 |  |  | data_[i][j] = 0.0; | 
| 54 |  |  | } | 
| 55 |  |  |  | 
| 56 |  |  | /** copy constructor */ | 
| 57 | tim | 74 | SquareMatrix(const RectMatrix<Real, Dim, Dim>& m)  : RectMatrix<Real, Dim, Dim>(m) { | 
| 58 | tim | 70 | } | 
| 59 |  |  |  | 
| 60 |  |  | /** copy assignment operator */ | 
| 61 | tim | 74 | SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) { | 
| 62 |  |  | RectMatrix<Real, Dim, Dim>::operator=(m); | 
| 63 |  |  | return *this; | 
| 64 | tim | 70 | } | 
| 65 | tim | 74 |  | 
| 66 |  |  | /** Retunrs  an identity matrix*/ | 
| 67 | tim | 70 |  | 
| 68 | tim | 74 | static SquareMatrix<Real, Dim> identity() { | 
| 69 |  |  | SquareMatrix<Real, Dim> m; | 
| 70 | tim | 70 |  | 
| 71 |  |  | for (unsigned int i = 0; i < Dim; i++) | 
| 72 | tim | 74 | for (unsigned int j = 0; j < Dim; j++) | 
| 73 | tim | 70 | if (i == j) | 
| 74 | tim | 74 | m(i, j) = 1.0; | 
| 75 | tim | 70 | else | 
| 76 | tim | 74 | m(i, j) = 0.0; | 
| 77 |  |  |  | 
| 78 |  |  | return m; | 
| 79 | tim | 70 | } | 
| 80 |  |  |  | 
| 81 | tim | 74 | /** Retunrs  the inversion of this matrix. */ | 
| 82 |  |  | SquareMatrix<Real, Dim>  inverse() { | 
| 83 |  |  | SquareMatrix<Real, Dim> result; | 
| 84 |  |  |  | 
| 85 |  |  | return result; | 
| 86 | tim | 76 | } | 
| 87 | tim | 70 |  | 
| 88 |  |  | /** Returns the determinant of this matrix. */ | 
| 89 |  |  | double determinant() const { | 
| 90 | tim | 74 | double det; | 
| 91 |  |  | return det; | 
| 92 | tim | 70 | } | 
| 93 |  |  |  | 
| 94 |  |  | /** Returns the trace of this matrix. */ | 
| 95 |  |  | double trace() const { | 
| 96 |  |  | double tmp = 0; | 
| 97 |  |  |  | 
| 98 |  |  | for (unsigned int i = 0; i < Dim ; i++) | 
| 99 |  |  | tmp += data_[i][i]; | 
| 100 |  |  |  | 
| 101 |  |  | return tmp; | 
| 102 |  |  | } | 
| 103 |  |  |  | 
| 104 |  |  | /** Tests if this matrix is symmetrix. */ | 
| 105 |  |  | bool isSymmetric() const { | 
| 106 |  |  | for (unsigned int i = 0; i < Dim - 1; i++) | 
| 107 |  |  | for (unsigned int j = i; j < Dim; j++) | 
| 108 | tim | 74 | if (fabs(data_[i][j] - data_[j][i]) > oopse::epsilon) | 
| 109 | tim | 70 | return false; | 
| 110 |  |  |  | 
| 111 |  |  | return true; | 
| 112 |  |  | } | 
| 113 |  |  |  | 
| 114 | tim | 76 | /** Tests if this matrix is orthogonal. */ | 
| 115 | tim | 74 | bool isOrthogonal() { | 
| 116 |  |  | SquareMatrix<Real, Dim> tmp; | 
| 117 | tim | 70 |  | 
| 118 | tim | 74 | tmp = *this * transpose(); | 
| 119 | tim | 70 |  | 
| 120 | tim | 76 | return tmp.isDiagonal(); | 
| 121 | tim | 70 | } | 
| 122 |  |  |  | 
| 123 |  |  | /** Tests if this matrix is diagonal. */ | 
| 124 |  |  | bool isDiagonal() const { | 
| 125 |  |  | for (unsigned int i = 0; i < Dim ; i++) | 
| 126 |  |  | for (unsigned int j = 0; j < Dim; j++) | 
| 127 | tim | 74 | if (i !=j && fabs(data_[i][j]) > oopse::epsilon) | 
| 128 | tim | 70 | return false; | 
| 129 |  |  |  | 
| 130 |  |  | return true; | 
| 131 |  |  | } | 
| 132 |  |  |  | 
| 133 |  |  | /** Tests if this matrix is the unit matrix. */ | 
| 134 |  |  | bool isUnitMatrix() const { | 
| 135 |  |  | if (!isDiagonal()) | 
| 136 |  |  | return false; | 
| 137 |  |  |  | 
| 138 |  |  | for (unsigned int i = 0; i < Dim ; i++) | 
| 139 | tim | 74 | if (fabs(data_[i][i] - 1) > oopse::epsilon) | 
| 140 | tim | 70 | return false; | 
| 141 |  |  |  | 
| 142 |  |  | return true; | 
| 143 | tim | 74 | } | 
| 144 | tim | 70 |  | 
| 145 | tim | 76 | void diagonalize() { | 
| 146 |  |  | jacobi(m, eigenValues, ortMat); | 
| 147 |  |  | } | 
| 148 |  |  |  | 
| 149 |  |  | /** | 
| 150 |  |  | * Finds the eigenvalues and eigenvectors of a symmetric matrix | 
| 151 |  |  | * @param eigenvals a reference to a vector3 where the | 
| 152 |  |  | * eigenvalues will be stored. The eigenvalues are ordered so | 
| 153 |  |  | * that eigenvals[0] <= eigenvals[1] <= eigenvals[2]. | 
| 154 |  |  | * @return an orthogonal matrix whose ith column is an | 
| 155 |  |  | * eigenvector for the eigenvalue eigenvals[i] | 
| 156 |  |  | */ | 
| 157 |  |  | SquareMatrix<Real, Dim>  findEigenvectors(Vector<Real, Dim>& eigenValues) { | 
| 158 |  |  | SquareMatrix<Real, Dim> ortMat; | 
| 159 |  |  |  | 
| 160 |  |  | if ( !isSymmetric()){ | 
| 161 |  |  | throw(); | 
| 162 |  |  | } | 
| 163 |  |  |  | 
| 164 |  |  | SquareMatrix<Real, Dim> m(*this); | 
| 165 |  |  | jacobi(m, eigenValues, ortMat); | 
| 166 |  |  |  | 
| 167 |  |  | return ortMat; | 
| 168 |  |  | } | 
| 169 |  |  | /** | 
| 170 |  |  | * Jacobi iteration routines for computing eigenvalues/eigenvectors of | 
| 171 |  |  | * real symmetric matrix | 
| 172 |  |  | * | 
| 173 |  |  | * @return true if success, otherwise return false | 
| 174 |  |  | * @param a source matrix | 
| 175 |  |  | * @param w output eigenvalues | 
| 176 |  |  | * @param v output eigenvectors | 
| 177 |  |  | */ | 
| 178 | tim | 83 | bool jacobi(const SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w, | 
| 179 | tim | 76 | SquareMatrix<Real, Dim>& v); | 
| 180 | tim | 70 | };//end SquareMatrix | 
| 181 |  |  |  | 
| 182 | tim | 76 |  | 
| 183 |  |  | #define ROT(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau);a(k, l)=h+s*(g-h*tau) | 
| 184 |  |  | #define MAX_ROTATIONS 60 | 
| 185 |  |  |  | 
| 186 | tim | 83 | template<typename Real, int Dim> | 
| 187 |  |  | bool SquareMatrix<Real, Dim>::jacobi(const SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w, | 
| 188 |  |  | SquareMatrix<Real, Dim>& v) { | 
| 189 | tim | 76 | const int N = Dim; | 
| 190 |  |  | int i, j, k, iq, ip; | 
| 191 |  |  | double tresh, theta, tau, t, sm, s, h, g, c; | 
| 192 |  |  | double tmp; | 
| 193 |  |  | Vector<Real, Dim> b, z; | 
| 194 |  |  |  | 
| 195 |  |  | // initialize | 
| 196 | tim | 93 | for (ip=0; ip<N; ip++) { | 
| 197 |  |  | for (iq=0; iq<N; iq++) | 
| 198 |  |  | v(ip, iq) = 0.0; | 
| 199 |  |  | v(ip, ip) = 1.0; | 
| 200 | tim | 76 | } | 
| 201 | tim | 93 |  | 
| 202 |  |  | for (ip=0; ip<N; ip++) { | 
| 203 |  |  | b(ip) = w(ip) = a(ip, ip); | 
| 204 |  |  | z(ip) = 0.0; | 
| 205 | tim | 76 | } | 
| 206 |  |  |  | 
| 207 |  |  | // begin rotation sequence | 
| 208 | tim | 93 | for (i=0; i<MAX_ROTATIONS; i++) { | 
| 209 |  |  | sm = 0.0; | 
| 210 |  |  | for (ip=0; ip<2; ip++) { | 
| 211 |  |  | for (iq=ip+1; iq<N; iq++) | 
| 212 |  |  | sm += fabs(a(ip, iq)); | 
| 213 |  |  | } | 
| 214 |  |  |  | 
| 215 |  |  | if (sm == 0.0) | 
| 216 |  |  | break; | 
| 217 | tim | 76 |  | 
| 218 | tim | 93 | if (i < 4) | 
| 219 |  |  | tresh = 0.2*sm/(9); | 
| 220 |  |  | else | 
| 221 |  |  | tresh = 0.0; | 
| 222 | tim | 76 |  | 
| 223 | tim | 93 | for (ip=0; ip<2; ip++) { | 
| 224 |  |  | for (iq=ip+1; iq<N; iq++) { | 
| 225 |  |  | g = 100.0*fabs(a(ip, iq)); | 
| 226 |  |  | if (i > 4 && (fabs(w(ip))+g) == fabs(w(ip)) | 
| 227 |  |  | && (fabs(w(iq))+g) == fabs(w(iq))) { | 
| 228 |  |  | a(ip, iq) = 0.0; | 
| 229 |  |  | } else if (fabs(a(ip, iq)) > tresh) { | 
| 230 |  |  | h = w(iq) - w(ip); | 
| 231 |  |  | if ( (fabs(h)+g) == fabs(h)) { | 
| 232 |  |  | t = (a(ip, iq)) / h; | 
| 233 |  |  | } else { | 
| 234 |  |  | theta = 0.5*h / (a(ip, iq)); | 
| 235 |  |  | t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta)); | 
| 236 | tim | 76 |  | 
| 237 | tim | 93 | if (theta < 0.0) | 
| 238 |  |  | t = -t; | 
| 239 |  |  | } | 
| 240 | tim | 76 |  | 
| 241 | tim | 93 | c = 1.0 / sqrt(1+t*t); | 
| 242 |  |  | s = t*c; | 
| 243 |  |  | tau = s/(1.0+c); | 
| 244 |  |  | h = t*a(ip, iq); | 
| 245 |  |  | z(ip) -= h; | 
| 246 |  |  | z(iq) += h; | 
| 247 |  |  | w(ip) -= h; | 
| 248 |  |  | w(iq) += h; | 
| 249 |  |  | a(ip, iq)=0.0; | 
| 250 |  |  |  | 
| 251 |  |  | for (j=0;j<ip-1;j++) | 
| 252 |  |  | ROT(a,j,ip,j,iq); | 
| 253 |  |  |  | 
| 254 |  |  | for (j=ip+1;j<iq-1;j++) | 
| 255 |  |  | ROT(a,ip,j,j,iq); | 
| 256 |  |  |  | 
| 257 |  |  | for (j=iq+1; j<N; j++) | 
| 258 |  |  | ROT(a,ip,j,iq,j); | 
| 259 |  |  | for (j=0; j<N; j++) | 
| 260 |  |  | ROT(v,j,ip,j,iq); | 
| 261 |  |  | } | 
| 262 |  |  | } | 
| 263 |  |  | }//for (ip=0; ip<2; ip++) | 
| 264 |  |  |  | 
| 265 |  |  | for (ip=0; ip<N; ip++) { | 
| 266 |  |  | b(ip) += z(ip); | 
| 267 |  |  | w(ip) = b(ip); | 
| 268 |  |  | z(ip) = 0.0; | 
| 269 |  |  | } | 
| 270 |  |  |  | 
| 271 |  |  | } // end for (i=0; i<MAX_ROTATIONS; i++) | 
| 272 |  |  |  | 
| 273 | tim | 76 | if ( i >= MAX_ROTATIONS ) | 
| 274 | tim | 93 | return false; | 
| 275 | tim | 76 |  | 
| 276 |  |  | // sort eigenfunctions | 
| 277 | tim | 93 | for (j=0; j<N; j++) { | 
| 278 |  |  | k = j; | 
| 279 |  |  | tmp = w(k); | 
| 280 |  |  | for (i=j; i<N; i++) { | 
| 281 |  |  | if (w(i) >= tmp) { | 
| 282 |  |  | k = i; | 
| 283 |  |  | tmp = w(k); | 
| 284 |  |  | } | 
| 285 |  |  | } | 
| 286 |  |  |  | 
| 287 |  |  | if (k != j) { | 
| 288 |  |  | w(k) = w(j); | 
| 289 |  |  | w(j) = tmp; | 
| 290 |  |  | for (i=0; i<N; i++)  { | 
| 291 |  |  | tmp = v(i, j); | 
| 292 |  |  | v(i, j) = v(i, k); | 
| 293 |  |  | v(i, k) = tmp; | 
| 294 |  |  | } | 
| 295 |  |  | } | 
| 296 | tim | 76 | } | 
| 297 |  |  |  | 
| 298 |  |  | //    insure eigenvector consistency (i.e., Jacobi can compute | 
| 299 |  |  | //    vectors that are negative of one another (.707,.707,0) and | 
| 300 |  |  | //    (-.707,-.707,0). This can reek havoc in | 
| 301 |  |  | //    hyperstreamline/other stuff. We will select the most | 
| 302 |  |  | //    positive eigenvector. | 
| 303 |  |  | int numPos; | 
| 304 | tim | 93 | for (j=0; j<N; j++) { | 
| 305 |  |  | for (numPos=0, i=0; i<N; i++) if ( v(i, j) >= 0.0 ) numPos++; | 
| 306 |  |  | if ( numPos < 2 ) for(i=0; i<N; i++) v(i, j) *= -1.0; | 
| 307 | tim | 76 | } | 
| 308 |  |  |  | 
| 309 |  |  | return true; | 
| 310 | tim | 70 | } | 
| 311 | tim | 76 |  | 
| 312 |  |  | #undef ROT | 
| 313 |  |  | #undef MAX_ROTATIONS | 
| 314 |  |  |  | 
| 315 |  |  | } | 
| 316 |  |  |  | 
| 317 | tim | 70 | #endif //MATH_SQUAREMATRIX_HPP |