| 29 |  | * @date 10/11/2004 | 
| 30 |  | * @version 1.0 | 
| 31 |  | */ | 
| 32 | < | #ifndef MATH_SQUAREMATRIX_HPP | 
| 32 | > | #ifndef MATH_SQUAREMATRIX_HPP | 
| 33 |  | #define MATH_SQUAREMATRIX_HPP | 
| 34 |  |  | 
| 35 |  | #include "math/RectMatrix.hpp" | 
| 45 |  | template<typename Real, int Dim> | 
| 46 |  | class SquareMatrix : public RectMatrix<Real, Dim, Dim> { | 
| 47 |  | public: | 
| 48 | + | typedef Real ElemType; | 
| 49 | + | typedef Real* ElemPoinerType; | 
| 50 |  |  | 
| 51 | < | /** default constructor */ | 
| 52 | < | SquareMatrix() { | 
| 53 | < | for (unsigned int i = 0; i < Dim; i++) | 
| 54 | < | for (unsigned int j = 0; j < Dim; j++) | 
| 55 | < | data_[i][j] = 0.0; | 
| 56 | < | } | 
| 51 | > | /** default constructor */ | 
| 52 | > | SquareMatrix() { | 
| 53 | > | for (unsigned int i = 0; i < Dim; i++) | 
| 54 | > | for (unsigned int j = 0; j < Dim; j++) | 
| 55 | > | data_[i][j] = 0.0; | 
| 56 | > | } | 
| 57 |  |  | 
| 58 | < | /** copy constructor */ | 
| 59 | < | SquareMatrix(const RectMatrix<Real, Dim, Dim>& m)  : RectMatrix<Real, Dim, Dim>(m) { | 
| 60 | < | } | 
| 59 | < |  | 
| 60 | < | /** copy assignment operator */ | 
| 61 | < | SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) { | 
| 62 | < | RectMatrix<Real, Dim, Dim>::operator=(m); | 
| 63 | < | return *this; | 
| 64 | < | } | 
| 65 | < |  | 
| 66 | < | /** Retunrs  an identity matrix*/ | 
| 58 | > | /** Constructs and initializes every element of this matrix to a scalar */ | 
| 59 | > | SquareMatrix(Real s) : RectMatrix<Real, Dim, Dim>(s){ | 
| 60 | > | } | 
| 61 |  |  | 
| 62 | < | static SquareMatrix<Real, Dim> identity() { | 
| 63 | < | SquareMatrix<Real, Dim> m; | 
| 62 | > | /** Constructs and initializes from an array */ | 
| 63 | > | SquareMatrix(Real* array) : RectMatrix<Real, Dim, Dim>(array){ | 
| 64 | > | } | 
| 65 | > |  | 
| 66 | > |  | 
| 67 | > | /** copy constructor */ | 
| 68 | > | SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) { | 
| 69 | > | } | 
| 70 |  |  | 
| 71 | < | for (unsigned int i = 0; i < Dim; i++) | 
| 72 | < | for (unsigned int j = 0; j < Dim; j++) | 
| 73 | < | if (i == j) | 
| 74 | < | m(i, j) = 1.0; | 
| 75 | < | else | 
| 76 | < | m(i, j) = 0.0; | 
| 71 | > | /** copy assignment operator */ | 
| 72 | > | SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) { | 
| 73 | > | RectMatrix<Real, Dim, Dim>::operator=(m); | 
| 74 | > | return *this; | 
| 75 | > | } | 
| 76 | > |  | 
| 77 | > | /** Retunrs  an identity matrix*/ | 
| 78 |  |  | 
| 79 | < | return m; | 
| 80 | < | } | 
| 79 | > | static SquareMatrix<Real, Dim> identity() { | 
| 80 | > | SquareMatrix<Real, Dim> m; | 
| 81 | > |  | 
| 82 | > | for (unsigned int i = 0; i < Dim; i++) | 
| 83 | > | for (unsigned int j = 0; j < Dim; j++) | 
| 84 | > | if (i == j) | 
| 85 | > | m(i, j) = 1.0; | 
| 86 | > | else | 
| 87 | > | m(i, j) = 0.0; | 
| 88 |  |  | 
| 89 | < | /** Retunrs  the inversion of this matrix. */ | 
| 90 | < | SquareMatrix<Real, Dim>  inverse() { | 
| 83 | < | SquareMatrix<Real, Dim> result; | 
| 89 | > | return m; | 
| 90 | > | } | 
| 91 |  |  | 
| 92 | < | return result; | 
| 93 | < | } | 
| 92 | > | /** | 
| 93 | > | * Retunrs  the inversion of this matrix. | 
| 94 | > | * @todo need implementation | 
| 95 | > | */ | 
| 96 | > | SquareMatrix<Real, Dim>  inverse() { | 
| 97 | > | SquareMatrix<Real, Dim> result; | 
| 98 |  |  | 
| 99 | < |  | 
| 99 | > | return result; | 
| 100 | > | } | 
| 101 |  |  | 
| 102 | < | /** Returns the determinant of this matrix. */ | 
| 103 | < | double determinant() const { | 
| 104 | < | double det; | 
| 105 | < | return det; | 
| 106 | < | } | 
| 102 | > | /** | 
| 103 | > | * Returns the determinant of this matrix. | 
| 104 | > | * @todo need implementation | 
| 105 | > | */ | 
| 106 | > | Real determinant() const { | 
| 107 | > | Real det; | 
| 108 | > | return det; | 
| 109 | > | } | 
| 110 |  |  | 
| 111 | < | /** Returns the trace of this matrix. */ | 
| 112 | < | double trace() const { | 
| 113 | < | double tmp = 0; | 
| 114 | < |  | 
| 115 | < | for (unsigned int i = 0; i < Dim ; i++) | 
| 116 | < | tmp += data_[i][i]; | 
| 111 | > | /** Returns the trace of this matrix. */ | 
| 112 | > | Real trace() const { | 
| 113 | > | Real tmp = 0; | 
| 114 | > |  | 
| 115 | > | for (unsigned int i = 0; i < Dim ; i++) | 
| 116 | > | tmp += data_[i][i]; | 
| 117 |  |  | 
| 118 | < | return tmp; | 
| 119 | < | } | 
| 118 | > | return tmp; | 
| 119 | > | } | 
| 120 |  |  | 
| 121 | < | /** Tests if this matrix is symmetrix. */ | 
| 122 | < | bool isSymmetric() const { | 
| 123 | < | for (unsigned int i = 0; i < Dim - 1; i++) | 
| 124 | < | for (unsigned int j = i; j < Dim; j++) | 
| 125 | < | if (fabs(data_[i][j] - data_[j][i]) > oopse::epsilon) | 
| 126 | < | return false; | 
| 127 | < |  | 
| 128 | < | return true; | 
| 129 | < | } | 
| 121 | > | /** Tests if this matrix is symmetrix. */ | 
| 122 | > | bool isSymmetric() const { | 
| 123 | > | for (unsigned int i = 0; i < Dim - 1; i++) | 
| 124 | > | for (unsigned int j = i; j < Dim; j++) | 
| 125 | > | if (fabs(data_[i][j] - data_[j][i]) > oopse::epsilon) | 
| 126 | > | return false; | 
| 127 | > |  | 
| 128 | > | return true; | 
| 129 | > | } | 
| 130 |  |  | 
| 131 | < | /** Tests if this matrix is orthogona. */ | 
| 132 | < | bool isOrthogonal() { | 
| 133 | < | SquareMatrix<Real, Dim> tmp; | 
| 131 | > | /** Tests if this matrix is orthogonal. */ | 
| 132 | > | bool isOrthogonal() { | 
| 133 | > | SquareMatrix<Real, Dim> tmp; | 
| 134 |  |  | 
| 135 | < | tmp = *this * transpose(); | 
| 135 | > | tmp = *this * transpose(); | 
| 136 |  |  | 
| 137 | < | return tmp.isUnitMatrix(); | 
| 138 | < | } | 
| 137 | > | return tmp.isDiagonal(); | 
| 138 | > | } | 
| 139 |  |  | 
| 140 | < | /** Tests if this matrix is diagonal. */ | 
| 141 | < | bool isDiagonal() const { | 
| 142 | < | for (unsigned int i = 0; i < Dim ; i++) | 
| 143 | < | for (unsigned int j = 0; j < Dim; j++) | 
| 144 | < | if (i !=j && fabs(data_[i][j]) > oopse::epsilon) | 
| 145 | < | return false; | 
| 146 | < |  | 
| 147 | < | return true; | 
| 148 | < | } | 
| 140 | > | /** Tests if this matrix is diagonal. */ | 
| 141 | > | bool isDiagonal() const { | 
| 142 | > | for (unsigned int i = 0; i < Dim ; i++) | 
| 143 | > | for (unsigned int j = 0; j < Dim; j++) | 
| 144 | > | if (i !=j && fabs(data_[i][j]) > oopse::epsilon) | 
| 145 | > | return false; | 
| 146 | > |  | 
| 147 | > | return true; | 
| 148 | > | } | 
| 149 |  |  | 
| 150 | < | /** Tests if this matrix is the unit matrix. */ | 
| 151 | < | bool isUnitMatrix() const { | 
| 152 | < | if (!isDiagonal()) | 
| 138 | < | return false; | 
| 139 | < |  | 
| 140 | < | for (unsigned int i = 0; i < Dim ; i++) | 
| 141 | < | if (fabs(data_[i][i] - 1) > oopse::epsilon) | 
| 150 | > | /** Tests if this matrix is the unit matrix. */ | 
| 151 | > | bool isUnitMatrix() const { | 
| 152 | > | if (!isDiagonal()) | 
| 153 |  | return false; | 
| 154 |  |  | 
| 155 | < | return true; | 
| 156 | < | } | 
| 155 | > | for (unsigned int i = 0; i < Dim ; i++) | 
| 156 | > | if (fabs(data_[i][i] - 1) > oopse::epsilon) | 
| 157 | > | return false; | 
| 158 | > |  | 
| 159 | > | return true; | 
| 160 | > | } | 
| 161 |  |  | 
| 162 | + | /** @todo need implementation */ | 
| 163 | + | void diagonalize() { | 
| 164 | + | //jacobi(m, eigenValues, ortMat); | 
| 165 | + | } | 
| 166 | + |  | 
| 167 | + | /** | 
| 168 | + | * Jacobi iteration routines for computing eigenvalues/eigenvectors of | 
| 169 | + | * real symmetric matrix | 
| 170 | + | * | 
| 171 | + | * @return true if success, otherwise return false | 
| 172 | + | * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is | 
| 173 | + | *     overwritten | 
| 174 | + | * @param w will contain the eigenvalues of the matrix On return of this function | 
| 175 | + | * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are | 
| 176 | + | *    normalized and mutually orthogonal. | 
| 177 | + | */ | 
| 178 | + |  | 
| 179 | + | static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d, | 
| 180 | + | SquareMatrix<Real, Dim>& v); | 
| 181 |  | };//end SquareMatrix | 
| 182 |  |  | 
| 183 | + |  | 
| 184 | + | /*========================================================================= | 
| 185 | + |  | 
| 186 | + | Program:   Visualization Toolkit | 
| 187 | + | Module:    $RCSfile: SquareMatrix.hpp,v $ | 
| 188 | + |  | 
| 189 | + | Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen | 
| 190 | + | All rights reserved. | 
| 191 | + | See Copyright.txt or http://www.kitware.com/Copyright.htm for details. | 
| 192 | + |  | 
| 193 | + | This software is distributed WITHOUT ANY WARRANTY; without even | 
| 194 | + | the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR | 
| 195 | + | PURPOSE.  See the above copyright notice for more information. | 
| 196 | + |  | 
| 197 | + | =========================================================================*/ | 
| 198 | + |  | 
| 199 | + | #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau);\ | 
| 200 | + | a(k, l)=h+s*(g-h*tau) | 
| 201 | + |  | 
| 202 | + | #define VTK_MAX_ROTATIONS 20 | 
| 203 | + |  | 
| 204 | + | // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn | 
| 205 | + | // real symmetric matrix. Square nxn matrix a; size of matrix in n; | 
| 206 | + | // output eigenvalues in w; and output eigenvectors in v. Resulting | 
| 207 | + | // eigenvalues/vectors are sorted in decreasing order; eigenvectors are | 
| 208 | + | // normalized. | 
| 209 | + | template<typename Real, int Dim> | 
| 210 | + | int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w, | 
| 211 | + | SquareMatrix<Real, Dim>& v) { | 
| 212 | + | const int n = Dim; | 
| 213 | + | int i, j, k, iq, ip, numPos; | 
| 214 | + | Real tresh, theta, tau, t, sm, s, h, g, c, tmp; | 
| 215 | + | Real bspace[4], zspace[4]; | 
| 216 | + | Real *b = bspace; | 
| 217 | + | Real *z = zspace; | 
| 218 | + |  | 
| 219 | + | // only allocate memory if the matrix is large | 
| 220 | + | if (n > 4) { | 
| 221 | + | b = new Real[n]; | 
| 222 | + | z = new Real[n]; | 
| 223 | + | } | 
| 224 | + |  | 
| 225 | + | // initialize | 
| 226 | + | for (ip=0; ip<n; ip++) { | 
| 227 | + | for (iq=0; iq<n; iq++) { | 
| 228 | + | v(ip, iq) = 0.0; | 
| 229 | + | } | 
| 230 | + | v(ip, ip) = 1.0; | 
| 231 | + | } | 
| 232 | + | for (ip=0; ip<n; ip++) { | 
| 233 | + | b[ip] = w[ip] = a(ip, ip); | 
| 234 | + | z[ip] = 0.0; | 
| 235 | + | } | 
| 236 | + |  | 
| 237 | + | // begin rotation sequence | 
| 238 | + | for (i=0; i<VTK_MAX_ROTATIONS; i++) { | 
| 239 | + | sm = 0.0; | 
| 240 | + | for (ip=0; ip<n-1; ip++) { | 
| 241 | + | for (iq=ip+1; iq<n; iq++) { | 
| 242 | + | sm += fabs(a(ip, iq)); | 
| 243 | + | } | 
| 244 | + | } | 
| 245 | + | if (sm == 0.0) { | 
| 246 | + | break; | 
| 247 | + | } | 
| 248 | + |  | 
| 249 | + | if (i < 3) {                                // first 3 sweeps | 
| 250 | + | tresh = 0.2*sm/(n*n); | 
| 251 | + | } else { | 
| 252 | + | tresh = 0.0; | 
| 253 | + | } | 
| 254 | + |  | 
| 255 | + | for (ip=0; ip<n-1; ip++) { | 
| 256 | + | for (iq=ip+1; iq<n; iq++) { | 
| 257 | + | g = 100.0*fabs(a(ip, iq)); | 
| 258 | + |  | 
| 259 | + | // after 4 sweeps | 
| 260 | + | if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip]) | 
| 261 | + | && (fabs(w[iq])+g) == fabs(w[iq])) { | 
| 262 | + | a(ip, iq) = 0.0; | 
| 263 | + | } else if (fabs(a(ip, iq)) > tresh) { | 
| 264 | + | h = w[iq] - w[ip]; | 
| 265 | + | if ( (fabs(h)+g) == fabs(h)) { | 
| 266 | + | t = (a(ip, iq)) / h; | 
| 267 | + | } else { | 
| 268 | + | theta = 0.5*h / (a(ip, iq)); | 
| 269 | + | t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta)); | 
| 270 | + | if (theta < 0.0) { | 
| 271 | + | t = -t; | 
| 272 | + | } | 
| 273 | + | } | 
| 274 | + | c = 1.0 / sqrt(1+t*t); | 
| 275 | + | s = t*c; | 
| 276 | + | tau = s/(1.0+c); | 
| 277 | + | h = t*a(ip, iq); | 
| 278 | + | z[ip] -= h; | 
| 279 | + | z[iq] += h; | 
| 280 | + | w[ip] -= h; | 
| 281 | + | w[iq] += h; | 
| 282 | + | a(ip, iq)=0.0; | 
| 283 | + |  | 
| 284 | + | // ip already shifted left by 1 unit | 
| 285 | + | for (j = 0;j <= ip-1;j++) { | 
| 286 | + | VTK_ROTATE(a,j,ip,j,iq); | 
| 287 | + | } | 
| 288 | + | // ip and iq already shifted left by 1 unit | 
| 289 | + | for (j = ip+1;j <= iq-1;j++) { | 
| 290 | + | VTK_ROTATE(a,ip,j,j,iq); | 
| 291 | + | } | 
| 292 | + | // iq already shifted left by 1 unit | 
| 293 | + | for (j=iq+1; j<n; j++) { | 
| 294 | + | VTK_ROTATE(a,ip,j,iq,j); | 
| 295 | + | } | 
| 296 | + | for (j=0; j<n; j++) { | 
| 297 | + | VTK_ROTATE(v,j,ip,j,iq); | 
| 298 | + | } | 
| 299 | + | } | 
| 300 | + | } | 
| 301 | + | } | 
| 302 | + |  | 
| 303 | + | for (ip=0; ip<n; ip++) { | 
| 304 | + | b[ip] += z[ip]; | 
| 305 | + | w[ip] = b[ip]; | 
| 306 | + | z[ip] = 0.0; | 
| 307 | + | } | 
| 308 | + | } | 
| 309 | + |  | 
| 310 | + | //// this is NEVER called | 
| 311 | + | if ( i >= VTK_MAX_ROTATIONS ) { | 
| 312 | + | std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl; | 
| 313 | + | return 0; | 
| 314 | + | } | 
| 315 | + |  | 
| 316 | + | // sort eigenfunctions                 these changes do not affect accuracy | 
| 317 | + | for (j=0; j<n-1; j++) {                  // boundary incorrect | 
| 318 | + | k = j; | 
| 319 | + | tmp = w[k]; | 
| 320 | + | for (i=j+1; i<n; i++) {                // boundary incorrect, shifted already | 
| 321 | + | if (w[i] >= tmp) {                   // why exchage if same? | 
| 322 | + | k = i; | 
| 323 | + | tmp = w[k]; | 
| 324 | + | } | 
| 325 | + | } | 
| 326 | + | if (k != j) { | 
| 327 | + | w[k] = w[j]; | 
| 328 | + | w[j] = tmp; | 
| 329 | + | for (i=0; i<n; i++) { | 
| 330 | + | tmp = v(i, j); | 
| 331 | + | v(i, j) = v(i, k); | 
| 332 | + | v(i, k) = tmp; | 
| 333 | + | } | 
| 334 | + | } | 
| 335 | + | } | 
| 336 | + | // insure eigenvector consistency (i.e., Jacobi can compute vectors that | 
| 337 | + | // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can | 
| 338 | + | // reek havoc in hyperstreamline/other stuff. We will select the most | 
| 339 | + | // positive eigenvector. | 
| 340 | + | int ceil_half_n = (n >> 1) + (n & 1); | 
| 341 | + | for (j=0; j<n; j++) { | 
| 342 | + | for (numPos=0, i=0; i<n; i++) { | 
| 343 | + | if ( v(i, j) >= 0.0 ) { | 
| 344 | + | numPos++; | 
| 345 | + | } | 
| 346 | + | } | 
| 347 | + | //    if ( numPos < ceil(double(n)/double(2.0)) ) | 
| 348 | + | if ( numPos < ceil_half_n) { | 
| 349 | + | for (i=0; i<n; i++) { | 
| 350 | + | v(i, j) *= -1.0; | 
| 351 | + | } | 
| 352 | + | } | 
| 353 | + | } | 
| 354 | + |  | 
| 355 | + | if (n > 4) { | 
| 356 | + | delete [] b; | 
| 357 | + | delete [] z; | 
| 358 | + | } | 
| 359 | + | return 1; | 
| 360 | + | } | 
| 361 | + |  | 
| 362 | + |  | 
| 363 |  | } | 
| 364 |  | #endif //MATH_SQUAREMATRIX_HPP | 
| 365 | + |  |