# | Line 1 | Line 1 | |
---|---|---|
1 | < | /* |
1 | > | /* |
2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | |
3 | * | |
4 | * The University of Notre Dame grants you ("Licensee") a | |
# | Line 45 | Line 45 | |
45 | * @date 10/11/2004 | |
46 | * @version 1.0 | |
47 | */ | |
48 | < | #ifndef MATH_SQUAREMATRIX_HPP |
48 | > | #ifndef MATH_SQUAREMATRIX_HPP |
49 | #define MATH_SQUAREMATRIX_HPP | |
50 | ||
51 | #include "math/RectMatrix.hpp" | |
52 | ||
53 | namespace oopse { | |
54 | ||
55 | < | /** |
56 | < | * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp" |
57 | < | * @brief A square matrix class |
58 | < | * @template Real the element type |
59 | < | * @template Dim the dimension of the square matrix |
60 | < | */ |
61 | < | template<typename Real, int Dim> |
62 | < | class SquareMatrix : public RectMatrix<Real, Dim, Dim> { |
63 | < | public: |
64 | < | typedef Real ElemType; |
65 | < | typedef Real* ElemPoinerType; |
55 | > | /** |
56 | > | * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp" |
57 | > | * @brief A square matrix class |
58 | > | * @template Real the element type |
59 | > | * @template Dim the dimension of the square matrix |
60 | > | */ |
61 | > | template<typename Real, int Dim> |
62 | > | class SquareMatrix : public RectMatrix<Real, Dim, Dim> { |
63 | > | public: |
64 | > | typedef Real ElemType; |
65 | > | typedef Real* ElemPoinerType; |
66 | ||
67 | < | /** default constructor */ |
68 | < | SquareMatrix() { |
69 | < | for (unsigned int i = 0; i < Dim; i++) |
70 | < | for (unsigned int j = 0; j < Dim; j++) |
71 | < | this->data_[i][j] = 0.0; |
72 | < | } |
67 | > | /** default constructor */ |
68 | > | SquareMatrix() { |
69 | > | for (unsigned int i = 0; i < Dim; i++) |
70 | > | for (unsigned int j = 0; j < Dim; j++) |
71 | > | this->data_[i][j] = 0.0; |
72 | > | } |
73 | ||
74 | < | /** Constructs and initializes every element of this matrix to a scalar */ |
75 | < | SquareMatrix(Real s) : RectMatrix<Real, Dim, Dim>(s){ |
76 | < | } |
74 | > | /** Constructs and initializes every element of this matrix to a scalar */ |
75 | > | SquareMatrix(Real s) : RectMatrix<Real, Dim, Dim>(s){ |
76 | > | } |
77 | ||
78 | < | /** Constructs and initializes from an array */ |
79 | < | SquareMatrix(Real* array) : RectMatrix<Real, Dim, Dim>(array){ |
80 | < | } |
78 | > | /** Constructs and initializes from an array */ |
79 | > | SquareMatrix(Real* array) : RectMatrix<Real, Dim, Dim>(array){ |
80 | > | } |
81 | ||
82 | ||
83 | < | /** copy constructor */ |
84 | < | SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) { |
85 | < | } |
83 | > | /** copy constructor */ |
84 | > | SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) { |
85 | > | } |
86 | ||
87 | < | /** copy assignment operator */ |
88 | < | SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) { |
89 | < | RectMatrix<Real, Dim, Dim>::operator=(m); |
90 | < | return *this; |
91 | < | } |
87 | > | /** copy assignment operator */ |
88 | > | SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) { |
89 | > | RectMatrix<Real, Dim, Dim>::operator=(m); |
90 | > | return *this; |
91 | > | } |
92 | ||
93 | < | /** Retunrs an identity matrix*/ |
93 | > | /** Retunrs an identity matrix*/ |
94 | ||
95 | < | static SquareMatrix<Real, Dim> identity() { |
96 | < | SquareMatrix<Real, Dim> m; |
95 | > | static SquareMatrix<Real, Dim> identity() { |
96 | > | SquareMatrix<Real, Dim> m; |
97 | ||
98 | < | for (unsigned int i = 0; i < Dim; i++) |
99 | < | for (unsigned int j = 0; j < Dim; j++) |
100 | < | if (i == j) |
101 | < | m(i, j) = 1.0; |
102 | < | else |
103 | < | m(i, j) = 0.0; |
98 | > | for (unsigned int i = 0; i < Dim; i++) |
99 | > | for (unsigned int j = 0; j < Dim; j++) |
100 | > | if (i == j) |
101 | > | m(i, j) = 1.0; |
102 | > | else |
103 | > | m(i, j) = 0.0; |
104 | ||
105 | < | return m; |
106 | < | } |
105 | > | return m; |
106 | > | } |
107 | ||
108 | < | /** |
109 | < | * Retunrs the inversion of this matrix. |
110 | < | * @todo need implementation |
111 | < | */ |
112 | < | SquareMatrix<Real, Dim> inverse() { |
113 | < | SquareMatrix<Real, Dim> result; |
108 | > | /** |
109 | > | * Retunrs the inversion of this matrix. |
110 | > | * @todo need implementation |
111 | > | */ |
112 | > | SquareMatrix<Real, Dim> inverse() { |
113 | > | SquareMatrix<Real, Dim> result; |
114 | ||
115 | < | return result; |
116 | < | } |
115 | > | return result; |
116 | > | } |
117 | ||
118 | < | /** |
119 | < | * Returns the determinant of this matrix. |
120 | < | * @todo need implementation |
121 | < | */ |
122 | < | Real determinant() const { |
123 | < | Real det; |
124 | < | return det; |
125 | < | } |
118 | > | /** |
119 | > | * Returns the determinant of this matrix. |
120 | > | * @todo need implementation |
121 | > | */ |
122 | > | Real determinant() const { |
123 | > | Real det; |
124 | > | return det; |
125 | > | } |
126 | ||
127 | < | /** Returns the trace of this matrix. */ |
128 | < | Real trace() const { |
129 | < | Real tmp = 0; |
127 | > | /** Returns the trace of this matrix. */ |
128 | > | Real trace() const { |
129 | > | Real tmp = 0; |
130 | ||
131 | < | for (unsigned int i = 0; i < Dim ; i++) |
132 | < | tmp += this->data_[i][i]; |
131 | > | for (unsigned int i = 0; i < Dim ; i++) |
132 | > | tmp += this->data_[i][i]; |
133 | ||
134 | < | return tmp; |
135 | < | } |
134 | > | return tmp; |
135 | > | } |
136 | ||
137 | < | /** Tests if this matrix is symmetrix. */ |
138 | < | bool isSymmetric() const { |
139 | < | for (unsigned int i = 0; i < Dim - 1; i++) |
140 | < | for (unsigned int j = i; j < Dim; j++) |
141 | < | if (fabs(this->data_[i][j] - this->data_[j][i]) > oopse::epsilon) |
142 | < | return false; |
137 | > | /** Tests if this matrix is symmetrix. */ |
138 | > | bool isSymmetric() const { |
139 | > | for (unsigned int i = 0; i < Dim - 1; i++) |
140 | > | for (unsigned int j = i; j < Dim; j++) |
141 | > | if (fabs(this->data_[i][j] - this->data_[j][i]) > oopse::epsilon) |
142 | > | return false; |
143 | ||
144 | < | return true; |
145 | < | } |
144 | > | return true; |
145 | > | } |
146 | ||
147 | < | /** Tests if this matrix is orthogonal. */ |
148 | < | bool isOrthogonal() { |
149 | < | SquareMatrix<Real, Dim> tmp; |
147 | > | /** Tests if this matrix is orthogonal. */ |
148 | > | bool isOrthogonal() { |
149 | > | SquareMatrix<Real, Dim> tmp; |
150 | ||
151 | < | tmp = *this * transpose(); |
151 | > | tmp = *this * transpose(); |
152 | ||
153 | < | return tmp.isDiagonal(); |
154 | < | } |
153 | > | return tmp.isDiagonal(); |
154 | > | } |
155 | ||
156 | < | /** Tests if this matrix is diagonal. */ |
157 | < | bool isDiagonal() const { |
158 | < | for (unsigned int i = 0; i < Dim ; i++) |
159 | < | for (unsigned int j = 0; j < Dim; j++) |
160 | < | if (i !=j && fabs(this->data_[i][j]) > oopse::epsilon) |
161 | < | return false; |
156 | > | /** Tests if this matrix is diagonal. */ |
157 | > | bool isDiagonal() const { |
158 | > | for (unsigned int i = 0; i < Dim ; i++) |
159 | > | for (unsigned int j = 0; j < Dim; j++) |
160 | > | if (i !=j && fabs(this->data_[i][j]) > oopse::epsilon) |
161 | > | return false; |
162 | ||
163 | < | return true; |
164 | < | } |
163 | > | return true; |
164 | > | } |
165 | ||
166 | < | /** Tests if this matrix is the unit matrix. */ |
167 | < | bool isUnitMatrix() const { |
168 | < | if (!isDiagonal()) |
169 | < | return false; |
166 | > | /** Tests if this matrix is the unit matrix. */ |
167 | > | bool isUnitMatrix() const { |
168 | > | if (!isDiagonal()) |
169 | > | return false; |
170 | ||
171 | < | for (unsigned int i = 0; i < Dim ; i++) |
172 | < | if (fabs(this->data_[i][i] - 1) > oopse::epsilon) |
173 | < | return false; |
171 | > | for (unsigned int i = 0; i < Dim ; i++) |
172 | > | if (fabs(this->data_[i][i] - 1) > oopse::epsilon) |
173 | > | return false; |
174 | ||
175 | < | return true; |
176 | < | } |
175 | > | return true; |
176 | > | } |
177 | ||
178 | < | /** Return the transpose of this matrix */ |
179 | < | SquareMatrix<Real, Dim> transpose() const{ |
180 | < | SquareMatrix<Real, Dim> result; |
178 | > | /** Return the transpose of this matrix */ |
179 | > | SquareMatrix<Real, Dim> transpose() const{ |
180 | > | SquareMatrix<Real, Dim> result; |
181 | ||
182 | < | for (unsigned int i = 0; i < Dim; i++) |
183 | < | for (unsigned int j = 0; j < Dim; j++) |
184 | < | result(j, i) = this->data_[i][j]; |
182 | > | for (unsigned int i = 0; i < Dim; i++) |
183 | > | for (unsigned int j = 0; j < Dim; j++) |
184 | > | result(j, i) = this->data_[i][j]; |
185 | ||
186 | < | return result; |
187 | < | } |
186 | > | return result; |
187 | > | } |
188 | ||
189 | < | /** @todo need implementation */ |
190 | < | void diagonalize() { |
191 | < | //jacobi(m, eigenValues, ortMat); |
192 | < | } |
189 | > | /** @todo need implementation */ |
190 | > | void diagonalize() { |
191 | > | //jacobi(m, eigenValues, ortMat); |
192 | > | } |
193 | ||
194 | < | /** |
195 | < | * Jacobi iteration routines for computing eigenvalues/eigenvectors of |
196 | < | * real symmetric matrix |
197 | < | * |
198 | < | * @return true if success, otherwise return false |
199 | < | * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is |
200 | < | * overwritten |
201 | < | * @param w will contain the eigenvalues of the matrix On return of this function |
202 | < | * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are |
203 | < | * normalized and mutually orthogonal. |
204 | < | */ |
194 | > | /** |
195 | > | * Jacobi iteration routines for computing eigenvalues/eigenvectors of |
196 | > | * real symmetric matrix |
197 | > | * |
198 | > | * @return true if success, otherwise return false |
199 | > | * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is |
200 | > | * overwritten |
201 | > | * @param w will contain the eigenvalues of the matrix On return of this function |
202 | > | * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are |
203 | > | * normalized and mutually orthogonal. |
204 | > | */ |
205 | ||
206 | < | static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d, |
207 | < | SquareMatrix<Real, Dim>& v); |
208 | < | };//end SquareMatrix |
206 | > | static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d, |
207 | > | SquareMatrix<Real, Dim>& v); |
208 | > | };//end SquareMatrix |
209 | ||
210 | ||
211 | < | /*========================================================================= |
211 | > | /*========================================================================= |
212 | ||
213 | Program: Visualization Toolkit | |
214 | Module: $RCSfile: SquareMatrix.hpp,v $ | |
# | Line 217 | Line 217 | namespace oopse { | |
217 | All rights reserved. | |
218 | See Copyright.txt or http://www.kitware.com/Copyright.htm for details. | |
219 | ||
220 | < | This software is distributed WITHOUT ANY WARRANTY; without even |
221 | < | the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR |
222 | < | PURPOSE. See the above copyright notice for more information. |
220 | > | This software is distributed WITHOUT ANY WARRANTY; without even |
221 | > | the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR |
222 | > | PURPOSE. See the above copyright notice for more information. |
223 | ||
224 | < | =========================================================================*/ |
224 | > | =========================================================================*/ |
225 | ||
226 | < | #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau);\ |
227 | < | a(k, l)=h+s*(g-h*tau) |
226 | > | #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau); \ |
227 | > | a(k, l)=h+s*(g-h*tau) |
228 | ||
229 | #define VTK_MAX_ROTATIONS 20 | |
230 | ||
231 | < | // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn |
232 | < | // real symmetric matrix. Square nxn matrix a; size of matrix in n; |
233 | < | // output eigenvalues in w; and output eigenvectors in v. Resulting |
234 | < | // eigenvalues/vectors are sorted in decreasing order; eigenvectors are |
235 | < | // normalized. |
236 | < | template<typename Real, int Dim> |
237 | < | int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w, |
238 | < | SquareMatrix<Real, Dim>& v) { |
239 | < | const int n = Dim; |
240 | < | int i, j, k, iq, ip, numPos; |
241 | < | Real tresh, theta, tau, t, sm, s, h, g, c, tmp; |
242 | < | Real bspace[4], zspace[4]; |
243 | < | Real *b = bspace; |
244 | < | Real *z = zspace; |
245 | < | |
246 | < | // only allocate memory if the matrix is large |
247 | < | if (n > 4) { |
248 | < | b = new Real[n]; |
249 | < | z = new Real[n]; |
250 | < | } |
231 | > | // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn |
232 | > | // real symmetric matrix. Square nxn matrix a; size of matrix in n; |
233 | > | // output eigenvalues in w; and output eigenvectors in v. Resulting |
234 | > | // eigenvalues/vectors are sorted in decreasing order; eigenvectors are |
235 | > | // normalized. |
236 | > | template<typename Real, int Dim> |
237 | > | int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w, |
238 | > | SquareMatrix<Real, Dim>& v) { |
239 | > | const int n = Dim; |
240 | > | int i, j, k, iq, ip, numPos; |
241 | > | Real tresh, theta, tau, t, sm, s, h, g, c, tmp; |
242 | > | Real bspace[4], zspace[4]; |
243 | > | Real *b = bspace; |
244 | > | Real *z = zspace; |
245 | ||
246 | < | // initialize |
247 | < | for (ip=0; ip<n; ip++) { |
248 | < | for (iq=0; iq<n; iq++) { |
249 | < | v(ip, iq) = 0.0; |
250 | < | } |
257 | < | v(ip, ip) = 1.0; |
258 | < | } |
259 | < | for (ip=0; ip<n; ip++) { |
260 | < | b[ip] = w[ip] = a(ip, ip); |
261 | < | z[ip] = 0.0; |
262 | < | } |
246 | > | // only allocate memory if the matrix is large |
247 | > | if (n > 4) { |
248 | > | b = new Real[n]; |
249 | > | z = new Real[n]; |
250 | > | } |
251 | ||
252 | < | // begin rotation sequence |
253 | < | for (i=0; i<VTK_MAX_ROTATIONS; i++) { |
254 | < | sm = 0.0; |
255 | < | for (ip=0; ip<n-1; ip++) { |
256 | < | for (iq=ip+1; iq<n; iq++) { |
257 | < | sm += fabs(a(ip, iq)); |
258 | < | } |
259 | < | } |
260 | < | if (sm == 0.0) { |
261 | < | break; |
262 | < | } |
252 | > | // initialize |
253 | > | for (ip=0; ip<n; ip++) { |
254 | > | for (iq=0; iq<n; iq++) { |
255 | > | v(ip, iq) = 0.0; |
256 | > | } |
257 | > | v(ip, ip) = 1.0; |
258 | > | } |
259 | > | for (ip=0; ip<n; ip++) { |
260 | > | b[ip] = w[ip] = a(ip, ip); |
261 | > | z[ip] = 0.0; |
262 | > | } |
263 | ||
264 | < | if (i < 3) { // first 3 sweeps |
265 | < | tresh = 0.2*sm/(n*n); |
266 | < | } else { |
267 | < | tresh = 0.0; |
268 | < | } |
264 | > | // begin rotation sequence |
265 | > | for (i=0; i<VTK_MAX_ROTATIONS; i++) { |
266 | > | sm = 0.0; |
267 | > | for (ip=0; ip<n-1; ip++) { |
268 | > | for (iq=ip+1; iq<n; iq++) { |
269 | > | sm += fabs(a(ip, iq)); |
270 | > | } |
271 | > | } |
272 | > | if (sm == 0.0) { |
273 | > | break; |
274 | > | } |
275 | ||
276 | < | for (ip=0; ip<n-1; ip++) { |
277 | < | for (iq=ip+1; iq<n; iq++) { |
278 | < | g = 100.0*fabs(a(ip, iq)); |
276 | > | if (i < 3) { // first 3 sweeps |
277 | > | tresh = 0.2*sm/(n*n); |
278 | > | } else { |
279 | > | tresh = 0.0; |
280 | > | } |
281 | ||
282 | < | // after 4 sweeps |
283 | < | if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip]) |
284 | < | && (fabs(w[iq])+g) == fabs(w[iq])) { |
289 | < | a(ip, iq) = 0.0; |
290 | < | } else if (fabs(a(ip, iq)) > tresh) { |
291 | < | h = w[iq] - w[ip]; |
292 | < | if ( (fabs(h)+g) == fabs(h)) { |
293 | < | t = (a(ip, iq)) / h; |
294 | < | } else { |
295 | < | theta = 0.5*h / (a(ip, iq)); |
296 | < | t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta)); |
297 | < | if (theta < 0.0) { |
298 | < | t = -t; |
299 | < | } |
300 | < | } |
301 | < | c = 1.0 / sqrt(1+t*t); |
302 | < | s = t*c; |
303 | < | tau = s/(1.0+c); |
304 | < | h = t*a(ip, iq); |
305 | < | z[ip] -= h; |
306 | < | z[iq] += h; |
307 | < | w[ip] -= h; |
308 | < | w[iq] += h; |
309 | < | a(ip, iq)=0.0; |
282 | > | for (ip=0; ip<n-1; ip++) { |
283 | > | for (iq=ip+1; iq<n; iq++) { |
284 | > | g = 100.0*fabs(a(ip, iq)); |
285 | ||
286 | < | // ip already shifted left by 1 unit |
287 | < | for (j = 0;j <= ip-1;j++) { |
288 | < | VTK_ROTATE(a,j,ip,j,iq); |
289 | < | } |
290 | < | // ip and iq already shifted left by 1 unit |
291 | < | for (j = ip+1;j <= iq-1;j++) { |
292 | < | VTK_ROTATE(a,ip,j,j,iq); |
293 | < | } |
294 | < | // iq already shifted left by 1 unit |
295 | < | for (j=iq+1; j<n; j++) { |
296 | < | VTK_ROTATE(a,ip,j,iq,j); |
297 | < | } |
298 | < | for (j=0; j<n; j++) { |
299 | < | VTK_ROTATE(v,j,ip,j,iq); |
300 | < | } |
301 | < | } |
302 | < | } |
303 | < | } |
286 | > | // after 4 sweeps |
287 | > | if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip]) |
288 | > | && (fabs(w[iq])+g) == fabs(w[iq])) { |
289 | > | a(ip, iq) = 0.0; |
290 | > | } else if (fabs(a(ip, iq)) > tresh) { |
291 | > | h = w[iq] - w[ip]; |
292 | > | if ( (fabs(h)+g) == fabs(h)) { |
293 | > | t = (a(ip, iq)) / h; |
294 | > | } else { |
295 | > | theta = 0.5*h / (a(ip, iq)); |
296 | > | t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta)); |
297 | > | if (theta < 0.0) { |
298 | > | t = -t; |
299 | > | } |
300 | > | } |
301 | > | c = 1.0 / sqrt(1+t*t); |
302 | > | s = t*c; |
303 | > | tau = s/(1.0+c); |
304 | > | h = t*a(ip, iq); |
305 | > | z[ip] -= h; |
306 | > | z[iq] += h; |
307 | > | w[ip] -= h; |
308 | > | w[iq] += h; |
309 | > | a(ip, iq)=0.0; |
310 | ||
311 | < | for (ip=0; ip<n; ip++) { |
312 | < | b[ip] += z[ip]; |
313 | < | w[ip] = b[ip]; |
314 | < | z[ip] = 0.0; |
315 | < | } |
316 | < | } |
311 | > | // ip already shifted left by 1 unit |
312 | > | for (j = 0;j <= ip-1;j++) { |
313 | > | VTK_ROTATE(a,j,ip,j,iq); |
314 | > | } |
315 | > | // ip and iq already shifted left by 1 unit |
316 | > | for (j = ip+1;j <= iq-1;j++) { |
317 | > | VTK_ROTATE(a,ip,j,j,iq); |
318 | > | } |
319 | > | // iq already shifted left by 1 unit |
320 | > | for (j=iq+1; j<n; j++) { |
321 | > | VTK_ROTATE(a,ip,j,iq,j); |
322 | > | } |
323 | > | for (j=0; j<n; j++) { |
324 | > | VTK_ROTATE(v,j,ip,j,iq); |
325 | > | } |
326 | > | } |
327 | > | } |
328 | > | } |
329 | ||
330 | < | //// this is NEVER called |
331 | < | if ( i >= VTK_MAX_ROTATIONS ) { |
332 | < | std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl; |
333 | < | return 0; |
334 | < | } |
330 | > | for (ip=0; ip<n; ip++) { |
331 | > | b[ip] += z[ip]; |
332 | > | w[ip] = b[ip]; |
333 | > | z[ip] = 0.0; |
334 | > | } |
335 | > | } |
336 | ||
337 | < | // sort eigenfunctions these changes do not affect accuracy |
338 | < | for (j=0; j<n-1; j++) { // boundary incorrect |
339 | < | k = j; |
340 | < | tmp = w[k]; |
341 | < | for (i=j+1; i<n; i++) { // boundary incorrect, shifted already |
348 | < | if (w[i] >= tmp) { // why exchage if same? |
349 | < | k = i; |
350 | < | tmp = w[k]; |
351 | < | } |
352 | < | } |
353 | < | if (k != j) { |
354 | < | w[k] = w[j]; |
355 | < | w[j] = tmp; |
356 | < | for (i=0; i<n; i++) { |
357 | < | tmp = v(i, j); |
358 | < | v(i, j) = v(i, k); |
359 | < | v(i, k) = tmp; |
360 | < | } |
361 | < | } |
362 | < | } |
363 | < | // insure eigenvector consistency (i.e., Jacobi can compute vectors that |
364 | < | // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can |
365 | < | // reek havoc in hyperstreamline/other stuff. We will select the most |
366 | < | // positive eigenvector. |
367 | < | int ceil_half_n = (n >> 1) + (n & 1); |
368 | < | for (j=0; j<n; j++) { |
369 | < | for (numPos=0, i=0; i<n; i++) { |
370 | < | if ( v(i, j) >= 0.0 ) { |
371 | < | numPos++; |
372 | < | } |
373 | < | } |
374 | < | // if ( numPos < ceil(double(n)/double(2.0)) ) |
375 | < | if ( numPos < ceil_half_n) { |
376 | < | for (i=0; i<n; i++) { |
377 | < | v(i, j) *= -1.0; |
378 | < | } |
379 | < | } |
380 | < | } |
337 | > | //// this is NEVER called |
338 | > | if ( i >= VTK_MAX_ROTATIONS ) { |
339 | > | std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl; |
340 | > | return 0; |
341 | > | } |
342 | ||
343 | < | if (n > 4) { |
344 | < | delete [] b; |
345 | < | delete [] z; |
346 | < | } |
347 | < | return 1; |
343 | > | // sort eigenfunctions these changes do not affect accuracy |
344 | > | for (j=0; j<n-1; j++) { // boundary incorrect |
345 | > | k = j; |
346 | > | tmp = w[k]; |
347 | > | for (i=j+1; i<n; i++) { // boundary incorrect, shifted already |
348 | > | if (w[i] >= tmp) { // why exchage if same? |
349 | > | k = i; |
350 | > | tmp = w[k]; |
351 | > | } |
352 | > | } |
353 | > | if (k != j) { |
354 | > | w[k] = w[j]; |
355 | > | w[j] = tmp; |
356 | > | for (i=0; i<n; i++) { |
357 | > | tmp = v(i, j); |
358 | > | v(i, j) = v(i, k); |
359 | > | v(i, k) = tmp; |
360 | > | } |
361 | > | } |
362 | } | |
363 | + | // insure eigenvector consistency (i.e., Jacobi can compute vectors that |
364 | + | // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can |
365 | + | // reek havoc in hyperstreamline/other stuff. We will select the most |
366 | + | // positive eigenvector. |
367 | + | int ceil_half_n = (n >> 1) + (n & 1); |
368 | + | for (j=0; j<n; j++) { |
369 | + | for (numPos=0, i=0; i<n; i++) { |
370 | + | if ( v(i, j) >= 0.0 ) { |
371 | + | numPos++; |
372 | + | } |
373 | + | } |
374 | + | // if ( numPos < ceil(double(n)/double(2.0)) ) |
375 | + | if ( numPos < ceil_half_n) { |
376 | + | for (i=0; i<n; i++) { |
377 | + | v(i, j) *= -1.0; |
378 | + | } |
379 | + | } |
380 | + | } |
381 | ||
382 | + | if (n > 4) { |
383 | + | delete [] b; |
384 | + | delete [] z; |
385 | + | } |
386 | + | return 1; |
387 | + | } |
388 | ||
389 | + | |
390 | } | |
391 | #endif //MATH_SQUAREMATRIX_HPP | |
392 |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |