| 45 |  | template<typename Real, int Dim> | 
| 46 |  | class SquareMatrix : public RectMatrix<Real, Dim, Dim> { | 
| 47 |  | public: | 
| 48 | + | typedef Real ElemType; | 
| 49 | + | typedef Real* ElemPoinerType; | 
| 50 |  |  | 
| 51 | < | /** default constructor */ | 
| 52 | < | SquareMatrix() { | 
| 53 | < | for (unsigned int i = 0; i < Dim; i++) | 
| 54 | < | for (unsigned int j = 0; j < Dim; j++) | 
| 55 | < | data_[i][j] = 0.0; | 
| 56 | < | } | 
| 51 | > | /** default constructor */ | 
| 52 | > | SquareMatrix() { | 
| 53 | > | for (unsigned int i = 0; i < Dim; i++) | 
| 54 | > | for (unsigned int j = 0; j < Dim; j++) | 
| 55 | > | data_[i][j] = 0.0; | 
| 56 | > | } | 
| 57 |  |  | 
| 58 | < | /** copy constructor */ | 
| 59 | < | SquareMatrix(const RectMatrix<Real, Dim, Dim>& m)  : RectMatrix<Real, Dim, Dim>(m) { | 
| 60 | < | } | 
| 59 | < |  | 
| 60 | < | /** copy assignment operator */ | 
| 61 | < | SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) { | 
| 62 | < | RectMatrix<Real, Dim, Dim>::operator=(m); | 
| 63 | < | return *this; | 
| 64 | < | } | 
| 65 | < |  | 
| 66 | < | /** Retunrs  an identity matrix*/ | 
| 67 | < |  | 
| 68 | < | static SquareMatrix<Real, Dim> identity() { | 
| 69 | < | SquareMatrix<Real, Dim> m; | 
| 58 | > | /** copy constructor */ | 
| 59 | > | SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) { | 
| 60 | > | } | 
| 61 |  |  | 
| 62 | < | for (unsigned int i = 0; i < Dim; i++) | 
| 63 | < | for (unsigned int j = 0; j < Dim; j++) | 
| 64 | < | if (i == j) | 
| 65 | < | m(i, j) = 1.0; | 
| 66 | < | else | 
| 67 | < | m(i, j) = 0.0; | 
| 62 | > | /** copy assignment operator */ | 
| 63 | > | SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) { | 
| 64 | > | RectMatrix<Real, Dim, Dim>::operator=(m); | 
| 65 | > | return *this; | 
| 66 | > | } | 
| 67 | > |  | 
| 68 | > | /** Retunrs  an identity matrix*/ | 
| 69 |  |  | 
| 70 | < | return m; | 
| 71 | < | } | 
| 70 | > | static SquareMatrix<Real, Dim> identity() { | 
| 71 | > | SquareMatrix<Real, Dim> m; | 
| 72 | > |  | 
| 73 | > | for (unsigned int i = 0; i < Dim; i++) | 
| 74 | > | for (unsigned int j = 0; j < Dim; j++) | 
| 75 | > | if (i == j) | 
| 76 | > | m(i, j) = 1.0; | 
| 77 | > | else | 
| 78 | > | m(i, j) = 0.0; | 
| 79 |  |  | 
| 80 | < | /** | 
| 81 | < | * Retunrs  the inversion of this matrix. | 
| 83 | < | * @todo need implementation | 
| 84 | < | */ | 
| 85 | < | SquareMatrix<Real, Dim>  inverse() { | 
| 86 | < | SquareMatrix<Real, Dim> result; | 
| 80 | > | return m; | 
| 81 | > | } | 
| 82 |  |  | 
| 83 | < | return result; | 
| 84 | < | } | 
| 83 | > | /** | 
| 84 | > | * Retunrs  the inversion of this matrix. | 
| 85 | > | * @todo need implementation | 
| 86 | > | */ | 
| 87 | > | SquareMatrix<Real, Dim>  inverse() { | 
| 88 | > | SquareMatrix<Real, Dim> result; | 
| 89 |  |  | 
| 90 | < | /** | 
| 91 | < | * Returns the determinant of this matrix. | 
| 93 | < | * @todo need implementation | 
| 94 | < | */ | 
| 95 | < | Real determinant() const { | 
| 96 | < | Real det; | 
| 97 | < | return det; | 
| 98 | < | } | 
| 90 | > | return result; | 
| 91 | > | } | 
| 92 |  |  | 
| 93 | < | /** Returns the trace of this matrix. */ | 
| 94 | < | Real trace() const { | 
| 95 | < | Real tmp = 0; | 
| 96 | < |  | 
| 97 | < | for (unsigned int i = 0; i < Dim ; i++) | 
| 98 | < | tmp += data_[i][i]; | 
| 93 | > | /** | 
| 94 | > | * Returns the determinant of this matrix. | 
| 95 | > | * @todo need implementation | 
| 96 | > | */ | 
| 97 | > | Real determinant() const { | 
| 98 | > | Real det; | 
| 99 | > | return det; | 
| 100 | > | } | 
| 101 |  |  | 
| 102 | < | return tmp; | 
| 103 | < | } | 
| 102 | > | /** Returns the trace of this matrix. */ | 
| 103 | > | Real trace() const { | 
| 104 | > | Real tmp = 0; | 
| 105 | > |  | 
| 106 | > | for (unsigned int i = 0; i < Dim ; i++) | 
| 107 | > | tmp += data_[i][i]; | 
| 108 |  |  | 
| 109 | < | /** Tests if this matrix is symmetrix. */ | 
| 110 | < | bool isSymmetric() const { | 
| 111 | < | for (unsigned int i = 0; i < Dim - 1; i++) | 
| 112 | < | for (unsigned int j = i; j < Dim; j++) | 
| 113 | < | if (fabs(data_[i][j] - data_[j][i]) > oopse::epsilon) | 
| 114 | < | return false; | 
| 115 | < |  | 
| 116 | < | return true; | 
| 117 | < | } | 
| 109 | > | return tmp; | 
| 110 | > | } | 
| 111 | > |  | 
| 112 | > | /** Tests if this matrix is symmetrix. */ | 
| 113 | > | bool isSymmetric() const { | 
| 114 | > | for (unsigned int i = 0; i < Dim - 1; i++) | 
| 115 | > | for (unsigned int j = i; j < Dim; j++) | 
| 116 | > | if (fabs(data_[i][j] - data_[j][i]) > oopse::epsilon) | 
| 117 | > | return false; | 
| 118 | > |  | 
| 119 | > | return true; | 
| 120 | > | } | 
| 121 |  |  | 
| 122 | < | /** Tests if this matrix is orthogonal. */ | 
| 123 | < | bool isOrthogonal() { | 
| 124 | < | SquareMatrix<Real, Dim> tmp; | 
| 122 | > | /** Tests if this matrix is orthogonal. */ | 
| 123 | > | bool isOrthogonal() { | 
| 124 | > | SquareMatrix<Real, Dim> tmp; | 
| 125 |  |  | 
| 126 | < | tmp = *this * transpose(); | 
| 126 | > | tmp = *this * transpose(); | 
| 127 |  |  | 
| 128 | < | return tmp.isDiagonal(); | 
| 129 | < | } | 
| 128 | > | return tmp.isDiagonal(); | 
| 129 | > | } | 
| 130 |  |  | 
| 131 | < | /** Tests if this matrix is diagonal. */ | 
| 132 | < | bool isDiagonal() const { | 
| 133 | < | for (unsigned int i = 0; i < Dim ; i++) | 
| 134 | < | for (unsigned int j = 0; j < Dim; j++) | 
| 135 | < | if (i !=j && fabs(data_[i][j]) > oopse::epsilon) | 
| 136 | < | return false; | 
| 137 | < |  | 
| 138 | < | return true; | 
| 139 | < | } | 
| 131 | > | /** Tests if this matrix is diagonal. */ | 
| 132 | > | bool isDiagonal() const { | 
| 133 | > | for (unsigned int i = 0; i < Dim ; i++) | 
| 134 | > | for (unsigned int j = 0; j < Dim; j++) | 
| 135 | > | if (i !=j && fabs(data_[i][j]) > oopse::epsilon) | 
| 136 | > | return false; | 
| 137 | > |  | 
| 138 | > | return true; | 
| 139 | > | } | 
| 140 |  |  | 
| 141 | < | /** Tests if this matrix is the unit matrix. */ | 
| 142 | < | bool isUnitMatrix() const { | 
| 143 | < | if (!isDiagonal()) | 
| 142 | < | return false; | 
| 143 | < |  | 
| 144 | < | for (unsigned int i = 0; i < Dim ; i++) | 
| 145 | < | if (fabs(data_[i][i] - 1) > oopse::epsilon) | 
| 141 | > | /** Tests if this matrix is the unit matrix. */ | 
| 142 | > | bool isUnitMatrix() const { | 
| 143 | > | if (!isDiagonal()) | 
| 144 |  | return false; | 
| 145 |  |  | 
| 146 | < | return true; | 
| 147 | < | } | 
| 146 | > | for (unsigned int i = 0; i < Dim ; i++) | 
| 147 | > | if (fabs(data_[i][i] - 1) > oopse::epsilon) | 
| 148 | > | return false; | 
| 149 | > |  | 
| 150 | > | return true; | 
| 151 | > | } | 
| 152 |  |  | 
| 153 | < | /** @todo need implementation */ | 
| 154 | < | void diagonalize() { | 
| 155 | < | //jacobi(m, eigenValues, ortMat); | 
| 156 | < | } | 
| 153 | > | /** @todo need implementation */ | 
| 154 | > | void diagonalize() { | 
| 155 | > | //jacobi(m, eigenValues, ortMat); | 
| 156 | > | } | 
| 157 |  |  | 
| 158 | < | /** | 
| 159 | < | * Jacobi iteration routines for computing eigenvalues/eigenvectors of | 
| 160 | < | * real symmetric matrix | 
| 161 | < | * | 
| 162 | < | * @return true if success, otherwise return false | 
| 163 | < | * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is | 
| 164 | < | *     overwritten | 
| 165 | < | * @param w will contain the eigenvalues of the matrix On return of this function | 
| 166 | < | * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are | 
| 167 | < | *    normalized and mutually orthogonal. | 
| 168 | < | */ | 
| 169 | < |  | 
| 170 | < | static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d, | 
| 171 | < | SquareMatrix<Real, Dim>& v); | 
| 158 | > | /** | 
| 159 | > | * Jacobi iteration routines for computing eigenvalues/eigenvectors of | 
| 160 | > | * real symmetric matrix | 
| 161 | > | * | 
| 162 | > | * @return true if success, otherwise return false | 
| 163 | > | * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is | 
| 164 | > | *     overwritten | 
| 165 | > | * @param w will contain the eigenvalues of the matrix On return of this function | 
| 166 | > | * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are | 
| 167 | > | *    normalized and mutually orthogonal. | 
| 168 | > | */ | 
| 169 | > |  | 
| 170 | > | static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d, | 
| 171 | > | SquareMatrix<Real, Dim>& v); | 
| 172 |  | };//end SquareMatrix | 
| 173 |  |  | 
| 174 |  |  |