| 1 | /* | 
| 2 | * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project | 
| 3 | * | 
| 4 | * Contact: oopse@oopse.org | 
| 5 | * | 
| 6 | * This program is free software; you can redistribute it and/or | 
| 7 | * modify it under the terms of the GNU Lesser General Public License | 
| 8 | * as published by the Free Software Foundation; either version 2.1 | 
| 9 | * of the License, or (at your option) any later version. | 
| 10 | * All we ask is that proper credit is given for our work, which includes | 
| 11 | * - but is not limited to - adding the above copyright notice to the beginning | 
| 12 | * of your source code files, and to any copyright notice that you may distribute | 
| 13 | * with programs based on this work. | 
| 14 | * | 
| 15 | * This program is distributed in the hope that it will be useful, | 
| 16 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| 18 | * GNU Lesser General Public License for more details. | 
| 19 | * | 
| 20 | * You should have received a copy of the GNU Lesser General Public License | 
| 21 | * along with this program; if not, write to the Free Software | 
| 22 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA. | 
| 23 | * | 
| 24 | */ | 
| 25 |  | 
| 26 | /** | 
| 27 | * @file SquareMatrix.hpp | 
| 28 | * @author Teng Lin | 
| 29 | * @date 10/11/2004 | 
| 30 | * @version 1.0 | 
| 31 | */ | 
| 32 | #ifndef MATH_SQUAREMATRIX_HPP | 
| 33 | #define MATH_SQUAREMATRIX_HPP | 
| 34 |  | 
| 35 | #include "math/RectMatrix.hpp" | 
| 36 |  | 
| 37 | namespace oopse { | 
| 38 |  | 
| 39 | /** | 
| 40 | * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp" | 
| 41 | * @brief A square matrix class | 
| 42 | * @template Real the element type | 
| 43 | * @template Dim the dimension of the square matrix | 
| 44 | */ | 
| 45 | template<typename Real, int Dim> | 
| 46 | class SquareMatrix : public RectMatrix<Real, Dim, Dim> { | 
| 47 | public: | 
| 48 |  | 
| 49 | /** default constructor */ | 
| 50 | SquareMatrix() { | 
| 51 | for (unsigned int i = 0; i < Dim; i++) | 
| 52 | for (unsigned int j = 0; j < Dim; j++) | 
| 53 | data_[i][j] = 0.0; | 
| 54 | } | 
| 55 |  | 
| 56 | /** copy constructor */ | 
| 57 | SquareMatrix(const RectMatrix<Real, Dim, Dim>& m)  : RectMatrix<Real, Dim, Dim>(m) { | 
| 58 | } | 
| 59 |  | 
| 60 | /** copy assignment operator */ | 
| 61 | SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) { | 
| 62 | RectMatrix<Real, Dim, Dim>::operator=(m); | 
| 63 | return *this; | 
| 64 | } | 
| 65 |  | 
| 66 | /** Retunrs  an identity matrix*/ | 
| 67 |  | 
| 68 | static SquareMatrix<Real, Dim> identity() { | 
| 69 | SquareMatrix<Real, Dim> m; | 
| 70 |  | 
| 71 | for (unsigned int i = 0; i < Dim; i++) | 
| 72 | for (unsigned int j = 0; j < Dim; j++) | 
| 73 | if (i == j) | 
| 74 | m(i, j) = 1.0; | 
| 75 | else | 
| 76 | m(i, j) = 0.0; | 
| 77 |  | 
| 78 | return m; | 
| 79 | } | 
| 80 |  | 
| 81 | /** | 
| 82 | * Retunrs  the inversion of this matrix. | 
| 83 | * @todo need implementation | 
| 84 | */ | 
| 85 | SquareMatrix<Real, Dim>  inverse() { | 
| 86 | SquareMatrix<Real, Dim> result; | 
| 87 |  | 
| 88 | return result; | 
| 89 | } | 
| 90 |  | 
| 91 | /** | 
| 92 | * Returns the determinant of this matrix. | 
| 93 | * @todo need implementation | 
| 94 | */ | 
| 95 | Real determinant() const { | 
| 96 | Real det; | 
| 97 | return det; | 
| 98 | } | 
| 99 |  | 
| 100 | /** Returns the trace of this matrix. */ | 
| 101 | Real trace() const { | 
| 102 | Real tmp = 0; | 
| 103 |  | 
| 104 | for (unsigned int i = 0; i < Dim ; i++) | 
| 105 | tmp += data_[i][i]; | 
| 106 |  | 
| 107 | return tmp; | 
| 108 | } | 
| 109 |  | 
| 110 | /** Tests if this matrix is symmetrix. */ | 
| 111 | bool isSymmetric() const { | 
| 112 | for (unsigned int i = 0; i < Dim - 1; i++) | 
| 113 | for (unsigned int j = i; j < Dim; j++) | 
| 114 | if (fabs(data_[i][j] - data_[j][i]) > oopse::epsilon) | 
| 115 | return false; | 
| 116 |  | 
| 117 | return true; | 
| 118 | } | 
| 119 |  | 
| 120 | /** Tests if this matrix is orthogonal. */ | 
| 121 | bool isOrthogonal() { | 
| 122 | SquareMatrix<Real, Dim> tmp; | 
| 123 |  | 
| 124 | tmp = *this * transpose(); | 
| 125 |  | 
| 126 | return tmp.isDiagonal(); | 
| 127 | } | 
| 128 |  | 
| 129 | /** Tests if this matrix is diagonal. */ | 
| 130 | bool isDiagonal() const { | 
| 131 | for (unsigned int i = 0; i < Dim ; i++) | 
| 132 | for (unsigned int j = 0; j < Dim; j++) | 
| 133 | if (i !=j && fabs(data_[i][j]) > oopse::epsilon) | 
| 134 | return false; | 
| 135 |  | 
| 136 | return true; | 
| 137 | } | 
| 138 |  | 
| 139 | /** Tests if this matrix is the unit matrix. */ | 
| 140 | bool isUnitMatrix() const { | 
| 141 | if (!isDiagonal()) | 
| 142 | return false; | 
| 143 |  | 
| 144 | for (unsigned int i = 0; i < Dim ; i++) | 
| 145 | if (fabs(data_[i][i] - 1) > oopse::epsilon) | 
| 146 | return false; | 
| 147 |  | 
| 148 | return true; | 
| 149 | } | 
| 150 |  | 
| 151 | /** @todo need implementation */ | 
| 152 | void diagonalize() { | 
| 153 | //jacobi(m, eigenValues, ortMat); | 
| 154 | } | 
| 155 |  | 
| 156 | /** | 
| 157 | * Jacobi iteration routines for computing eigenvalues/eigenvectors of | 
| 158 | * real symmetric matrix | 
| 159 | * | 
| 160 | * @return true if success, otherwise return false | 
| 161 | * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is | 
| 162 | *     overwritten | 
| 163 | * @param w will contain the eigenvalues of the matrix On return of this function | 
| 164 | * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are | 
| 165 | *    normalized and mutually orthogonal. | 
| 166 | */ | 
| 167 |  | 
| 168 | static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d, | 
| 169 | SquareMatrix<Real, Dim>& v); | 
| 170 | };//end SquareMatrix | 
| 171 |  | 
| 172 |  | 
| 173 | /*========================================================================= | 
| 174 |  | 
| 175 | Program:   Visualization Toolkit | 
| 176 | Module:    $RCSfile: SquareMatrix.hpp,v $ | 
| 177 |  | 
| 178 | Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen | 
| 179 | All rights reserved. | 
| 180 | See Copyright.txt or http://www.kitware.com/Copyright.htm for details. | 
| 181 |  | 
| 182 | This software is distributed WITHOUT ANY WARRANTY; without even | 
| 183 | the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR | 
| 184 | PURPOSE.  See the above copyright notice for more information. | 
| 185 |  | 
| 186 | =========================================================================*/ | 
| 187 |  | 
| 188 | #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau);\ | 
| 189 | a(k, l)=h+s*(g-h*tau) | 
| 190 |  | 
| 191 | #define VTK_MAX_ROTATIONS 20 | 
| 192 |  | 
| 193 | // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn | 
| 194 | // real symmetric matrix. Square nxn matrix a; size of matrix in n; | 
| 195 | // output eigenvalues in w; and output eigenvectors in v. Resulting | 
| 196 | // eigenvalues/vectors are sorted in decreasing order; eigenvectors are | 
| 197 | // normalized. | 
| 198 | template<typename Real, int Dim> | 
| 199 | int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w, | 
| 200 | SquareMatrix<Real, Dim>& v) { | 
| 201 | const int n = Dim; | 
| 202 | int i, j, k, iq, ip, numPos; | 
| 203 | Real tresh, theta, tau, t, sm, s, h, g, c, tmp; | 
| 204 | Real bspace[4], zspace[4]; | 
| 205 | Real *b = bspace; | 
| 206 | Real *z = zspace; | 
| 207 |  | 
| 208 | // only allocate memory if the matrix is large | 
| 209 | if (n > 4) | 
| 210 | { | 
| 211 | b = new Real[n]; | 
| 212 | z = new Real[n]; | 
| 213 | } | 
| 214 |  | 
| 215 | // initialize | 
| 216 | for (ip=0; ip<n; ip++) | 
| 217 | { | 
| 218 | for (iq=0; iq<n; iq++) | 
| 219 | { | 
| 220 | v(ip, iq) = 0.0; | 
| 221 | } | 
| 222 | v(ip, ip) = 1.0; | 
| 223 | } | 
| 224 | for (ip=0; ip<n; ip++) | 
| 225 | { | 
| 226 | b[ip] = w[ip] = a(ip, ip); | 
| 227 | z[ip] = 0.0; | 
| 228 | } | 
| 229 |  | 
| 230 | // begin rotation sequence | 
| 231 | for (i=0; i<VTK_MAX_ROTATIONS; i++) | 
| 232 | { | 
| 233 | sm = 0.0; | 
| 234 | for (ip=0; ip<n-1; ip++) | 
| 235 | { | 
| 236 | for (iq=ip+1; iq<n; iq++) | 
| 237 | { | 
| 238 | sm += fabs(a(ip, iq)); | 
| 239 | } | 
| 240 | } | 
| 241 | if (sm == 0.0) | 
| 242 | { | 
| 243 | break; | 
| 244 | } | 
| 245 |  | 
| 246 | if (i < 3)                                // first 3 sweeps | 
| 247 | { | 
| 248 | tresh = 0.2*sm/(n*n); | 
| 249 | } | 
| 250 | else | 
| 251 | { | 
| 252 | tresh = 0.0; | 
| 253 | } | 
| 254 |  | 
| 255 | for (ip=0; ip<n-1; ip++) | 
| 256 | { | 
| 257 | for (iq=ip+1; iq<n; iq++) | 
| 258 | { | 
| 259 | g = 100.0*fabs(a(ip, iq)); | 
| 260 |  | 
| 261 | // after 4 sweeps | 
| 262 | if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip]) | 
| 263 | && (fabs(w[iq])+g) == fabs(w[iq])) | 
| 264 | { | 
| 265 | a(ip, iq) = 0.0; | 
| 266 | } | 
| 267 | else if (fabs(a(ip, iq)) > tresh) | 
| 268 | { | 
| 269 | h = w[iq] - w[ip]; | 
| 270 | if ( (fabs(h)+g) == fabs(h)) | 
| 271 | { | 
| 272 | t = (a(ip, iq)) / h; | 
| 273 | } | 
| 274 | else | 
| 275 | { | 
| 276 | theta = 0.5*h / (a(ip, iq)); | 
| 277 | t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta)); | 
| 278 | if (theta < 0.0) | 
| 279 | { | 
| 280 | t = -t; | 
| 281 | } | 
| 282 | } | 
| 283 | c = 1.0 / sqrt(1+t*t); | 
| 284 | s = t*c; | 
| 285 | tau = s/(1.0+c); | 
| 286 | h = t*a(ip, iq); | 
| 287 | z[ip] -= h; | 
| 288 | z[iq] += h; | 
| 289 | w[ip] -= h; | 
| 290 | w[iq] += h; | 
| 291 | a(ip, iq)=0.0; | 
| 292 |  | 
| 293 | // ip already shifted left by 1 unit | 
| 294 | for (j = 0;j <= ip-1;j++) | 
| 295 | { | 
| 296 | VTK_ROTATE(a,j,ip,j,iq); | 
| 297 | } | 
| 298 | // ip and iq already shifted left by 1 unit | 
| 299 | for (j = ip+1;j <= iq-1;j++) | 
| 300 | { | 
| 301 | VTK_ROTATE(a,ip,j,j,iq); | 
| 302 | } | 
| 303 | // iq already shifted left by 1 unit | 
| 304 | for (j=iq+1; j<n; j++) | 
| 305 | { | 
| 306 | VTK_ROTATE(a,ip,j,iq,j); | 
| 307 | } | 
| 308 | for (j=0; j<n; j++) | 
| 309 | { | 
| 310 | VTK_ROTATE(v,j,ip,j,iq); | 
| 311 | } | 
| 312 | } | 
| 313 | } | 
| 314 | } | 
| 315 |  | 
| 316 | for (ip=0; ip<n; ip++) | 
| 317 | { | 
| 318 | b[ip] += z[ip]; | 
| 319 | w[ip] = b[ip]; | 
| 320 | z[ip] = 0.0; | 
| 321 | } | 
| 322 | } | 
| 323 |  | 
| 324 | //// this is NEVER called | 
| 325 | if ( i >= VTK_MAX_ROTATIONS ) | 
| 326 | { | 
| 327 | std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl; | 
| 328 | return 0; | 
| 329 | } | 
| 330 |  | 
| 331 | // sort eigenfunctions                 these changes do not affect accuracy | 
| 332 | for (j=0; j<n-1; j++)                  // boundary incorrect | 
| 333 | { | 
| 334 | k = j; | 
| 335 | tmp = w[k]; | 
| 336 | for (i=j+1; i<n; i++)                // boundary incorrect, shifted already | 
| 337 | { | 
| 338 | if (w[i] >= tmp)                   // why exchage if same? | 
| 339 | { | 
| 340 | k = i; | 
| 341 | tmp = w[k]; | 
| 342 | } | 
| 343 | } | 
| 344 | if (k != j) | 
| 345 | { | 
| 346 | w[k] = w[j]; | 
| 347 | w[j] = tmp; | 
| 348 | for (i=0; i<n; i++) | 
| 349 | { | 
| 350 | tmp = v(i, j); | 
| 351 | v(i, j) = v(i, k); | 
| 352 | v(i, k) = tmp; | 
| 353 | } | 
| 354 | } | 
| 355 | } | 
| 356 | // insure eigenvector consistency (i.e., Jacobi can compute vectors that | 
| 357 | // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can | 
| 358 | // reek havoc in hyperstreamline/other stuff. We will select the most | 
| 359 | // positive eigenvector. | 
| 360 | int ceil_half_n = (n >> 1) + (n & 1); | 
| 361 | for (j=0; j<n; j++) | 
| 362 | { | 
| 363 | for (numPos=0, i=0; i<n; i++) | 
| 364 | { | 
| 365 | if ( v(i, j) >= 0.0 ) | 
| 366 | { | 
| 367 | numPos++; | 
| 368 | } | 
| 369 | } | 
| 370 | //    if ( numPos < ceil(double(n)/double(2.0)) ) | 
| 371 | if ( numPos < ceil_half_n) | 
| 372 | { | 
| 373 | for(i=0; i<n; i++) | 
| 374 | { | 
| 375 | v(i, j) *= -1.0; | 
| 376 | } | 
| 377 | } | 
| 378 | } | 
| 379 |  | 
| 380 | if (n > 4) | 
| 381 | { | 
| 382 | delete [] b; | 
| 383 | delete [] z; | 
| 384 | } | 
| 385 | return 1; | 
| 386 | } | 
| 387 |  | 
| 388 |  | 
| 389 | } | 
| 390 | #endif //MATH_SQUAREMATRIX_HPP | 
| 391 |  |