| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | */ | 
| 42 |  | 
| 43 | /** | 
| 44 | * @file SquareMatrix.hpp | 
| 45 | * @author Teng Lin | 
| 46 | * @date 10/11/2004 | 
| 47 | * @version 1.0 | 
| 48 | */ | 
| 49 | #ifndef MATH_SQUAREMATRIX_HPP | 
| 50 | #define MATH_SQUAREMATRIX_HPP | 
| 51 |  | 
| 52 | #include "math/RectMatrix.hpp" | 
| 53 | #include "utils/NumericConstant.hpp" | 
| 54 |  | 
| 55 | namespace OpenMD { | 
| 56 |  | 
| 57 | /** | 
| 58 | * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp" | 
| 59 | * @brief A square matrix class | 
| 60 | * \tparam Real the element type | 
| 61 | * \tparam Dim the dimension of the square matrix | 
| 62 | */ | 
| 63 | template<typename Real, int Dim> | 
| 64 | class SquareMatrix : public RectMatrix<Real, Dim, Dim> { | 
| 65 | public: | 
| 66 | typedef Real ElemType; | 
| 67 | typedef Real* ElemPoinerType; | 
| 68 |  | 
| 69 | /** default constructor */ | 
| 70 | SquareMatrix() { | 
| 71 | for (unsigned int i = 0; i < Dim; i++) | 
| 72 | for (unsigned int j = 0; j < Dim; j++) | 
| 73 | this->data_[i][j] = 0.0; | 
| 74 | } | 
| 75 |  | 
| 76 | /** Constructs and initializes every element of this matrix to a scalar */ | 
| 77 | SquareMatrix(Real s) : RectMatrix<Real, Dim, Dim>(s){ | 
| 78 | } | 
| 79 |  | 
| 80 | /** Constructs and initializes from an array */ | 
| 81 | SquareMatrix(Real* array) : RectMatrix<Real, Dim, Dim>(array){ | 
| 82 | } | 
| 83 |  | 
| 84 |  | 
| 85 | /** copy constructor */ | 
| 86 | SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) { | 
| 87 | } | 
| 88 |  | 
| 89 | /** copy assignment operator */ | 
| 90 | SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) { | 
| 91 | RectMatrix<Real, Dim, Dim>::operator=(m); | 
| 92 | return *this; | 
| 93 | } | 
| 94 |  | 
| 95 | /** Retunrs  an identity matrix*/ | 
| 96 |  | 
| 97 | static SquareMatrix<Real, Dim> identity() { | 
| 98 | SquareMatrix<Real, Dim> m; | 
| 99 |  | 
| 100 | for (unsigned int i = 0; i < Dim; i++) | 
| 101 | for (unsigned int j = 0; j < Dim; j++) | 
| 102 | if (i == j) | 
| 103 | m(i, j) = 1.0; | 
| 104 | else | 
| 105 | m(i, j) = 0.0; | 
| 106 |  | 
| 107 | return m; | 
| 108 | } | 
| 109 |  | 
| 110 | /** | 
| 111 | * Retunrs  the inversion of this matrix. | 
| 112 | * @todo need implementation | 
| 113 | */ | 
| 114 | SquareMatrix<Real, Dim>  inverse() { | 
| 115 | SquareMatrix<Real, Dim> result; | 
| 116 |  | 
| 117 | return result; | 
| 118 | } | 
| 119 |  | 
| 120 | /** | 
| 121 | * Returns the determinant of this matrix. | 
| 122 | * @todo need implementation | 
| 123 | */ | 
| 124 | Real determinant() const { | 
| 125 | Real det; | 
| 126 | return det; | 
| 127 | } | 
| 128 |  | 
| 129 | /** Returns the trace of this matrix. */ | 
| 130 | Real trace() const { | 
| 131 | Real tmp = 0; | 
| 132 |  | 
| 133 | for (unsigned int i = 0; i < Dim ; i++) | 
| 134 | tmp += this->data_[i][i]; | 
| 135 |  | 
| 136 | return tmp; | 
| 137 | } | 
| 138 |  | 
| 139 | /** | 
| 140 | * Returns the tensor contraction (double dot product) of two rank 2 | 
| 141 | * tensors (or Matrices) | 
| 142 | * @param t1 first tensor | 
| 143 | * @param t2 second tensor | 
| 144 | * @return the tensor contraction (double dot product) of t1 and t2 | 
| 145 | */ | 
| 146 | Real doubleDot( const SquareMatrix<Real, Dim>& t1, const SquareMatrix<Real, Dim>& t2 ) { | 
| 147 | Real tmp; | 
| 148 | tmp = 0; | 
| 149 |  | 
| 150 | for (unsigned int i = 0; i < Dim; i++) | 
| 151 | for (unsigned int j =0; j < Dim; j++) | 
| 152 | tmp += t1[i][j] * t2[i][j]; | 
| 153 |  | 
| 154 | return tmp; | 
| 155 | } | 
| 156 |  | 
| 157 |  | 
| 158 | /** Tests if this matrix is symmetrix. */ | 
| 159 | bool isSymmetric() const { | 
| 160 | for (unsigned int i = 0; i < Dim - 1; i++) | 
| 161 | for (unsigned int j = i; j < Dim; j++) | 
| 162 | if (fabs(this->data_[i][j] - this->data_[j][i]) > epsilon) | 
| 163 | return false; | 
| 164 |  | 
| 165 | return true; | 
| 166 | } | 
| 167 |  | 
| 168 | /** Tests if this matrix is orthogonal. */ | 
| 169 | bool isOrthogonal() { | 
| 170 | SquareMatrix<Real, Dim> tmp; | 
| 171 |  | 
| 172 | tmp = *this * transpose(); | 
| 173 |  | 
| 174 | return tmp.isDiagonal(); | 
| 175 | } | 
| 176 |  | 
| 177 | /** Tests if this matrix is diagonal. */ | 
| 178 | bool isDiagonal() const { | 
| 179 | for (unsigned int i = 0; i < Dim ; i++) | 
| 180 | for (unsigned int j = 0; j < Dim; j++) | 
| 181 | if (i !=j && fabs(this->data_[i][j]) > epsilon) | 
| 182 | return false; | 
| 183 |  | 
| 184 | return true; | 
| 185 | } | 
| 186 |  | 
| 187 | /** | 
| 188 | * Returns a column vector that contains the elements from the | 
| 189 | * diagonal of m in the order R(0) = m(0,0), R(1) = m(1,1), and so | 
| 190 | * on. | 
| 191 | */ | 
| 192 | Vector<Real, Dim> diagonals() const { | 
| 193 | Vector<Real, Dim> result; | 
| 194 | for (unsigned int i = 0; i < Dim; i++) { | 
| 195 | result(i) = this->data_[i][i]; | 
| 196 | } | 
| 197 | return result; | 
| 198 | } | 
| 199 |  | 
| 200 | /** Tests if this matrix is the unit matrix. */ | 
| 201 | bool isUnitMatrix() const { | 
| 202 | if (!isDiagonal()) | 
| 203 | return false; | 
| 204 |  | 
| 205 | for (unsigned int i = 0; i < Dim ; i++) | 
| 206 | if (fabs(this->data_[i][i] - 1) > epsilon) | 
| 207 | return false; | 
| 208 |  | 
| 209 | return true; | 
| 210 | } | 
| 211 |  | 
| 212 | /** Return the transpose of this matrix */ | 
| 213 | SquareMatrix<Real,  Dim> transpose() const{ | 
| 214 | SquareMatrix<Real,  Dim> result; | 
| 215 |  | 
| 216 | for (unsigned int i = 0; i < Dim; i++) | 
| 217 | for (unsigned int j = 0; j < Dim; j++) | 
| 218 | result(j, i) = this->data_[i][j]; | 
| 219 |  | 
| 220 | return result; | 
| 221 | } | 
| 222 |  | 
| 223 | /** @todo need implementation */ | 
| 224 | void diagonalize() { | 
| 225 | //jacobi(m, eigenValues, ortMat); | 
| 226 | } | 
| 227 |  | 
| 228 | /** | 
| 229 | * Jacobi iteration routines for computing eigenvalues/eigenvectors of | 
| 230 | * real symmetric matrix | 
| 231 | * | 
| 232 | * @return true if success, otherwise return false | 
| 233 | * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is | 
| 234 | *     overwritten | 
| 235 | * @param d will contain the eigenvalues of the matrix On return of this function | 
| 236 | * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are | 
| 237 | *    normalized and mutually orthogonal. | 
| 238 | */ | 
| 239 |  | 
| 240 | static int jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& d, | 
| 241 | SquareMatrix<Real, Dim>& v); | 
| 242 | };//end SquareMatrix | 
| 243 |  | 
| 244 |  | 
| 245 | /*========================================================================= | 
| 246 |  | 
| 247 | Program:   Visualization Toolkit | 
| 248 | Module:    $RCSfile: SquareMatrix.hpp,v $ | 
| 249 |  | 
| 250 | Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen | 
| 251 | All rights reserved. | 
| 252 | See Copyright.txt or http://www.kitware.com/Copyright.htm for details. | 
| 253 |  | 
| 254 | This software is distributed WITHOUT ANY WARRANTY; without even | 
| 255 | the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR | 
| 256 | PURPOSE.  See the above copyright notice for more information. | 
| 257 |  | 
| 258 | =========================================================================*/ | 
| 259 |  | 
| 260 | #define VTK_ROTATE(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau); \ | 
| 261 | a(k, l)=h+s*(g-h*tau) | 
| 262 |  | 
| 263 | #define VTK_MAX_ROTATIONS 20 | 
| 264 |  | 
| 265 | // Jacobi iteration for the solution of eigenvectors/eigenvalues of a nxn | 
| 266 | // real symmetric matrix. Square nxn matrix a; size of matrix in n; | 
| 267 | // output eigenvalues in w; and output eigenvectors in v. Resulting | 
| 268 | // eigenvalues/vectors are sorted in decreasing order; eigenvectors are | 
| 269 | // normalized. | 
| 270 | template<typename Real, int Dim> | 
| 271 | int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w, | 
| 272 | SquareMatrix<Real, Dim>& v) { | 
| 273 | const int n = Dim; | 
| 274 | int i, j, k, iq, ip, numPos; | 
| 275 | Real tresh, theta, tau, t, sm, s, h, g, c, tmp; | 
| 276 | Real bspace[4], zspace[4]; | 
| 277 | Real *b = bspace; | 
| 278 | Real *z = zspace; | 
| 279 |  | 
| 280 | // only allocate memory if the matrix is large | 
| 281 | if (n > 4) { | 
| 282 | b = new Real[n]; | 
| 283 | z = new Real[n]; | 
| 284 | } | 
| 285 |  | 
| 286 | // initialize | 
| 287 | for (ip=0; ip<n; ip++) { | 
| 288 | for (iq=0; iq<n; iq++) { | 
| 289 | v(ip, iq) = 0.0; | 
| 290 | } | 
| 291 | v(ip, ip) = 1.0; | 
| 292 | } | 
| 293 | for (ip=0; ip<n; ip++) { | 
| 294 | b[ip] = w[ip] = a(ip, ip); | 
| 295 | z[ip] = 0.0; | 
| 296 | } | 
| 297 |  | 
| 298 | // begin rotation sequence | 
| 299 | for (i=0; i<VTK_MAX_ROTATIONS; i++) { | 
| 300 | sm = 0.0; | 
| 301 | for (ip=0; ip<n-1; ip++) { | 
| 302 | for (iq=ip+1; iq<n; iq++) { | 
| 303 | sm += fabs(a(ip, iq)); | 
| 304 | } | 
| 305 | } | 
| 306 | if (sm == 0.0) { | 
| 307 | break; | 
| 308 | } | 
| 309 |  | 
| 310 | if (i < 3) {                                // first 3 sweeps | 
| 311 | tresh = 0.2*sm/(n*n); | 
| 312 | } else { | 
| 313 | tresh = 0.0; | 
| 314 | } | 
| 315 |  | 
| 316 | for (ip=0; ip<n-1; ip++) { | 
| 317 | for (iq=ip+1; iq<n; iq++) { | 
| 318 | g = 100.0*fabs(a(ip, iq)); | 
| 319 |  | 
| 320 | // after 4 sweeps | 
| 321 | if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip]) | 
| 322 | && (fabs(w[iq])+g) == fabs(w[iq])) { | 
| 323 | a(ip, iq) = 0.0; | 
| 324 | } else if (fabs(a(ip, iq)) > tresh) { | 
| 325 | h = w[iq] - w[ip]; | 
| 326 | if ( (fabs(h)+g) == fabs(h)) { | 
| 327 | t = (a(ip, iq)) / h; | 
| 328 | } else { | 
| 329 | theta = 0.5*h / (a(ip, iq)); | 
| 330 | t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta)); | 
| 331 | if (theta < 0.0) { | 
| 332 | t = -t; | 
| 333 | } | 
| 334 | } | 
| 335 | c = 1.0 / sqrt(1+t*t); | 
| 336 | s = t*c; | 
| 337 | tau = s/(1.0+c); | 
| 338 | h = t*a(ip, iq); | 
| 339 | z[ip] -= h; | 
| 340 | z[iq] += h; | 
| 341 | w[ip] -= h; | 
| 342 | w[iq] += h; | 
| 343 | a(ip, iq)=0.0; | 
| 344 |  | 
| 345 | // ip already shifted left by 1 unit | 
| 346 | for (j = 0;j <= ip-1;j++) { | 
| 347 | VTK_ROTATE(a,j,ip,j,iq); | 
| 348 | } | 
| 349 | // ip and iq already shifted left by 1 unit | 
| 350 | for (j = ip+1;j <= iq-1;j++) { | 
| 351 | VTK_ROTATE(a,ip,j,j,iq); | 
| 352 | } | 
| 353 | // iq already shifted left by 1 unit | 
| 354 | for (j=iq+1; j<n; j++) { | 
| 355 | VTK_ROTATE(a,ip,j,iq,j); | 
| 356 | } | 
| 357 | for (j=0; j<n; j++) { | 
| 358 | VTK_ROTATE(v,j,ip,j,iq); | 
| 359 | } | 
| 360 | } | 
| 361 | } | 
| 362 | } | 
| 363 |  | 
| 364 | for (ip=0; ip<n; ip++) { | 
| 365 | b[ip] += z[ip]; | 
| 366 | w[ip] = b[ip]; | 
| 367 | z[ip] = 0.0; | 
| 368 | } | 
| 369 | } | 
| 370 |  | 
| 371 | //// this is NEVER called | 
| 372 | if ( i >= VTK_MAX_ROTATIONS ) { | 
| 373 | std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl; | 
| 374 | if (n > 4) { | 
| 375 | delete[] b; | 
| 376 | delete[] z; | 
| 377 | } | 
| 378 | return 0; | 
| 379 | } | 
| 380 |  | 
| 381 | // sort eigenfunctions                 these changes do not affect accuracy | 
| 382 | for (j=0; j<n-1; j++) {                  // boundary incorrect | 
| 383 | k = j; | 
| 384 | tmp = w[k]; | 
| 385 | for (i=j+1; i<n; i++) {                // boundary incorrect, shifted already | 
| 386 | if (w[i] >= tmp) {                   // why exchage if same? | 
| 387 | k = i; | 
| 388 | tmp = w[k]; | 
| 389 | } | 
| 390 | } | 
| 391 | if (k != j) { | 
| 392 | w[k] = w[j]; | 
| 393 | w[j] = tmp; | 
| 394 | for (i=0; i<n; i++) { | 
| 395 | tmp = v(i, j); | 
| 396 | v(i, j) = v(i, k); | 
| 397 | v(i, k) = tmp; | 
| 398 | } | 
| 399 | } | 
| 400 | } | 
| 401 | // insure eigenvector consistency (i.e., Jacobi can compute vectors that | 
| 402 | // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can | 
| 403 | // reek havoc in hyperstreamline/other stuff. We will select the most | 
| 404 | // positive eigenvector. | 
| 405 | int ceil_half_n = (n >> 1) + (n & 1); | 
| 406 | for (j=0; j<n; j++) { | 
| 407 | for (numPos=0, i=0; i<n; i++) { | 
| 408 | if ( v(i, j) >= 0.0 ) { | 
| 409 | numPos++; | 
| 410 | } | 
| 411 | } | 
| 412 | //    if ( numPos < ceil(RealType(n)/RealType(2.0)) ) | 
| 413 | if ( numPos < ceil_half_n) { | 
| 414 | for (i=0; i<n; i++) { | 
| 415 | v(i, j) *= -1.0; | 
| 416 | } | 
| 417 | } | 
| 418 | } | 
| 419 |  | 
| 420 | if (n > 4) { | 
| 421 | delete [] b; | 
| 422 | delete [] z; | 
| 423 | } | 
| 424 | return 1; | 
| 425 | } | 
| 426 |  | 
| 427 |  | 
| 428 | typedef SquareMatrix<RealType, 6> Mat6x6d; | 
| 429 | } | 
| 430 | #endif //MATH_SQUAREMATRIX_HPP | 
| 431 |  |