| 1 | /* | 
| 2 | * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project | 
| 3 | * | 
| 4 | * Contact: oopse@oopse.org | 
| 5 | * | 
| 6 | * This program is free software; you can redistribute it and/or | 
| 7 | * modify it under the terms of the GNU Lesser General Public License | 
| 8 | * as published by the Free Software Foundation; either version 2.1 | 
| 9 | * of the License, or (at your option) any later version. | 
| 10 | * All we ask is that proper credit is given for our work, which includes | 
| 11 | * - but is not limited to - adding the above copyright notice to the beginning | 
| 12 | * of your source code files, and to any copyright notice that you may distribute | 
| 13 | * with programs based on this work. | 
| 14 | * | 
| 15 | * This program is distributed in the hope that it will be useful, | 
| 16 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| 18 | * GNU Lesser General Public License for more details. | 
| 19 | * | 
| 20 | * You should have received a copy of the GNU Lesser General Public License | 
| 21 | * along with this program; if not, write to the Free Software | 
| 22 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA. | 
| 23 | * | 
| 24 | */ | 
| 25 |  | 
| 26 | /** | 
| 27 | * @file SquareMatrix.hpp | 
| 28 | * @author Teng Lin | 
| 29 | * @date 10/11/2004 | 
| 30 | * @version 1.0 | 
| 31 | */ | 
| 32 | #ifndef MATH_SQUAREMATRIX_HPP | 
| 33 | #define MATH_SQUAREMATRIX_HPP | 
| 34 |  | 
| 35 | #include "math/RectMatrix.hpp" | 
| 36 |  | 
| 37 | namespace oopse { | 
| 38 |  | 
| 39 | /** | 
| 40 | * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp" | 
| 41 | * @brief A square matrix class | 
| 42 | * @template Real the element type | 
| 43 | * @template Dim the dimension of the square matrix | 
| 44 | */ | 
| 45 | template<typename Real, int Dim> | 
| 46 | class SquareMatrix : public RectMatrix<Real, Dim, Dim> { | 
| 47 | public: | 
| 48 |  | 
| 49 | /** default constructor */ | 
| 50 | SquareMatrix() { | 
| 51 | for (unsigned int i = 0; i < Dim; i++) | 
| 52 | for (unsigned int j = 0; j < Dim; j++) | 
| 53 | data_[i][j] = 0.0; | 
| 54 | } | 
| 55 |  | 
| 56 | /** copy constructor */ | 
| 57 | SquareMatrix(const RectMatrix<Real, Dim, Dim>& m)  : RectMatrix<Real, Dim, Dim>(m) { | 
| 58 | } | 
| 59 |  | 
| 60 | /** copy assignment operator */ | 
| 61 | SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) { | 
| 62 | RectMatrix<Real, Dim, Dim>::operator=(m); | 
| 63 | return *this; | 
| 64 | } | 
| 65 |  | 
| 66 | /** Retunrs  an identity matrix*/ | 
| 67 |  | 
| 68 | static SquareMatrix<Real, Dim> identity() { | 
| 69 | SquareMatrix<Real, Dim> m; | 
| 70 |  | 
| 71 | for (unsigned int i = 0; i < Dim; i++) | 
| 72 | for (unsigned int j = 0; j < Dim; j++) | 
| 73 | if (i == j) | 
| 74 | m(i, j) = 1.0; | 
| 75 | else | 
| 76 | m(i, j) = 0.0; | 
| 77 |  | 
| 78 | return m; | 
| 79 | } | 
| 80 |  | 
| 81 | /** | 
| 82 | * Retunrs  the inversion of this matrix. | 
| 83 | * @todo need implementation | 
| 84 | */ | 
| 85 | SquareMatrix<Real, Dim>  inverse() { | 
| 86 | SquareMatrix<Real, Dim> result; | 
| 87 |  | 
| 88 | return result; | 
| 89 | } | 
| 90 |  | 
| 91 | /** | 
| 92 | * Returns the determinant of this matrix. | 
| 93 | * @todo need implementation | 
| 94 | */ | 
| 95 | Real determinant() const { | 
| 96 | Real det; | 
| 97 | return det; | 
| 98 | } | 
| 99 |  | 
| 100 | /** Returns the trace of this matrix. */ | 
| 101 | Real trace() const { | 
| 102 | Real tmp = 0; | 
| 103 |  | 
| 104 | for (unsigned int i = 0; i < Dim ; i++) | 
| 105 | tmp += data_[i][i]; | 
| 106 |  | 
| 107 | return tmp; | 
| 108 | } | 
| 109 |  | 
| 110 | /** Tests if this matrix is symmetrix. */ | 
| 111 | bool isSymmetric() const { | 
| 112 | for (unsigned int i = 0; i < Dim - 1; i++) | 
| 113 | for (unsigned int j = i; j < Dim; j++) | 
| 114 | if (fabs(data_[i][j] - data_[j][i]) > oopse::epsilon) | 
| 115 | return false; | 
| 116 |  | 
| 117 | return true; | 
| 118 | } | 
| 119 |  | 
| 120 | /** Tests if this matrix is orthogonal. */ | 
| 121 | bool isOrthogonal() { | 
| 122 | SquareMatrix<Real, Dim> tmp; | 
| 123 |  | 
| 124 | tmp = *this * transpose(); | 
| 125 |  | 
| 126 | return tmp.isDiagonal(); | 
| 127 | } | 
| 128 |  | 
| 129 | /** Tests if this matrix is diagonal. */ | 
| 130 | bool isDiagonal() const { | 
| 131 | for (unsigned int i = 0; i < Dim ; i++) | 
| 132 | for (unsigned int j = 0; j < Dim; j++) | 
| 133 | if (i !=j && fabs(data_[i][j]) > oopse::epsilon) | 
| 134 | return false; | 
| 135 |  | 
| 136 | return true; | 
| 137 | } | 
| 138 |  | 
| 139 | /** Tests if this matrix is the unit matrix. */ | 
| 140 | bool isUnitMatrix() const { | 
| 141 | if (!isDiagonal()) | 
| 142 | return false; | 
| 143 |  | 
| 144 | for (unsigned int i = 0; i < Dim ; i++) | 
| 145 | if (fabs(data_[i][i] - 1) > oopse::epsilon) | 
| 146 | return false; | 
| 147 |  | 
| 148 | return true; | 
| 149 | } | 
| 150 |  | 
| 151 | /** @todo need implementation */ | 
| 152 | void diagonalize() { | 
| 153 | //jacobi(m, eigenValues, ortMat); | 
| 154 | } | 
| 155 |  | 
| 156 | /** | 
| 157 | * Finds the eigenvalues and eigenvectors of a symmetric matrix | 
| 158 | * @param eigenvals a reference to a vector3 where the | 
| 159 | * eigenvalues will be stored. The eigenvalues are ordered so | 
| 160 | * that eigenvals[0] <= eigenvals[1] <= eigenvals[2]. | 
| 161 | * @return an orthogonal matrix whose ith column is an | 
| 162 | * eigenvector for the eigenvalue eigenvals[i] | 
| 163 | */ | 
| 164 | SquareMatrix<Real, Dim>  findEigenvectors(Vector<Real, Dim>& eigenValues) { | 
| 165 | SquareMatrix<Real, Dim> ortMat; | 
| 166 |  | 
| 167 | if ( !isSymmetric()){ | 
| 168 | //throw(); | 
| 169 | } | 
| 170 |  | 
| 171 | SquareMatrix<Real, Dim> m(*this); | 
| 172 | jacobi(m, eigenValues, ortMat); | 
| 173 |  | 
| 174 | return ortMat; | 
| 175 | } | 
| 176 | /** | 
| 177 | * Jacobi iteration routines for computing eigenvalues/eigenvectors of | 
| 178 | * real symmetric matrix | 
| 179 | * | 
| 180 | * @return true if success, otherwise return false | 
| 181 | * @param a source matrix | 
| 182 | * @param w output eigenvalues | 
| 183 | * @param v output eigenvectors | 
| 184 | */ | 
| 185 | bool jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w, | 
| 186 | SquareMatrix<Real, Dim>& v); | 
| 187 | };//end SquareMatrix | 
| 188 |  | 
| 189 |  | 
| 190 | #define ROT(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau);a(k, l)=h+s*(g-h*tau) | 
| 191 | #define MAX_ROTATIONS 60 | 
| 192 |  | 
| 193 | template<typename Real, int Dim> | 
| 194 | bool SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w, | 
| 195 | SquareMatrix<Real, Dim>& v) { | 
| 196 | const int N = Dim; | 
| 197 | int i, j, k, iq, ip; | 
| 198 | Real tresh, theta, tau, t, sm, s, h, g, c; | 
| 199 | Real tmp; | 
| 200 | Vector<Real, Dim> b, z; | 
| 201 |  | 
| 202 | // initialize | 
| 203 | for (ip=0; ip<N; ip++) { | 
| 204 | for (iq=0; iq<N; iq++) | 
| 205 | v(ip, iq) = 0.0; | 
| 206 | v(ip, ip) = 1.0; | 
| 207 | } | 
| 208 |  | 
| 209 | for (ip=0; ip<N; ip++) { | 
| 210 | b(ip) = w(ip) = a(ip, ip); | 
| 211 | z(ip) = 0.0; | 
| 212 | } | 
| 213 |  | 
| 214 | // begin rotation sequence | 
| 215 | for (i=0; i<MAX_ROTATIONS; i++) { | 
| 216 | sm = 0.0; | 
| 217 | for (ip=0; ip<2; ip++) { | 
| 218 | for (iq=ip+1; iq<N; iq++) | 
| 219 | sm += fabs(a(ip, iq)); | 
| 220 | } | 
| 221 |  | 
| 222 | if (sm == 0.0) | 
| 223 | break; | 
| 224 |  | 
| 225 | if (i < 4) | 
| 226 | tresh = 0.2*sm/(9); | 
| 227 | else | 
| 228 | tresh = 0.0; | 
| 229 |  | 
| 230 | for (ip=0; ip<2; ip++) { | 
| 231 | for (iq=ip+1; iq<N; iq++) { | 
| 232 | g = 100.0*fabs(a(ip, iq)); | 
| 233 | if (i > 4 && (fabs(w(ip))+g) == fabs(w(ip)) | 
| 234 | && (fabs(w(iq))+g) == fabs(w(iq))) { | 
| 235 | a(ip, iq) = 0.0; | 
| 236 | } else if (fabs(a(ip, iq)) > tresh) { | 
| 237 | h = w(iq) - w(ip); | 
| 238 | if ( (fabs(h)+g) == fabs(h)) { | 
| 239 | t = (a(ip, iq)) / h; | 
| 240 | } else { | 
| 241 | theta = 0.5*h / (a(ip, iq)); | 
| 242 | t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta)); | 
| 243 |  | 
| 244 | if (theta < 0.0) | 
| 245 | t = -t; | 
| 246 | } | 
| 247 |  | 
| 248 | c = 1.0 / sqrt(1+t*t); | 
| 249 | s = t*c; | 
| 250 | tau = s/(1.0+c); | 
| 251 | h = t*a(ip, iq); | 
| 252 | z(ip) -= h; | 
| 253 | z(iq) += h; | 
| 254 | w(ip) -= h; | 
| 255 | w(iq) += h; | 
| 256 | a(ip, iq)=0.0; | 
| 257 |  | 
| 258 | for (j=0;j<ip-1;j++) | 
| 259 | ROT(a,j,ip,j,iq); | 
| 260 |  | 
| 261 | for (j=ip+1;j<iq-1;j++) | 
| 262 | ROT(a,ip,j,j,iq); | 
| 263 |  | 
| 264 | for (j=iq+1; j<N; j++) | 
| 265 | ROT(a,ip,j,iq,j); | 
| 266 |  | 
| 267 | for (j=0; j<N; j++) | 
| 268 | ROT(v,j,ip,j,iq); | 
| 269 | } | 
| 270 | } | 
| 271 | }//for (ip=0; ip<2; ip++) | 
| 272 |  | 
| 273 | for (ip=0; ip<N; ip++) { | 
| 274 | b(ip) += z(ip); | 
| 275 | w(ip) = b(ip); | 
| 276 | z(ip) = 0.0; | 
| 277 | } | 
| 278 |  | 
| 279 | } // end for (i=0; i<MAX_ROTATIONS; i++) | 
| 280 |  | 
| 281 | if ( i >= MAX_ROTATIONS ) | 
| 282 | return false; | 
| 283 |  | 
| 284 | // sort eigenfunctions | 
| 285 | for (j=0; j<N; j++) { | 
| 286 | k = j; | 
| 287 | tmp = w(k); | 
| 288 | for (i=j; i<N; i++) { | 
| 289 | if (w(i) >= tmp) { | 
| 290 | k = i; | 
| 291 | tmp = w(k); | 
| 292 | } | 
| 293 | } | 
| 294 |  | 
| 295 | if (k != j) { | 
| 296 | w(k) = w(j); | 
| 297 | w(j) = tmp; | 
| 298 | for (i=0; i<N; i++)  { | 
| 299 | tmp = v(i, j); | 
| 300 | v(i, j) = v(i, k); | 
| 301 | v(i, k) = tmp; | 
| 302 | } | 
| 303 | } | 
| 304 | } | 
| 305 |  | 
| 306 | //    insure eigenvector consistency (i.e., Jacobi can compute | 
| 307 | //    vectors that are negative of one another (.707,.707,0) and | 
| 308 | //    (-.707,-.707,0). This can reek havoc in | 
| 309 | //    hyperstreamline/other stuff. We will select the most | 
| 310 | //    positive eigenvector. | 
| 311 | int numPos; | 
| 312 | for (j=0; j<N; j++) { | 
| 313 | for (numPos=0, i=0; i<N; i++) if ( v(i, j) >= 0.0 ) numPos++; | 
| 314 | if ( numPos < 2 ) for(i=0; i<N; i++) v(i, j) *= -1.0; | 
| 315 | } | 
| 316 |  | 
| 317 | return true; | 
| 318 | } | 
| 319 |  | 
| 320 | #undef ROT | 
| 321 | #undef MAX_ROTATIONS | 
| 322 |  | 
| 323 | } | 
| 324 |  | 
| 325 | #endif //MATH_SQUAREMATRIX_HPP |