| 35 | 
  | 
 *                                                                       | 
| 36 | 
  | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
  | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
< | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).           | 
| 38 | 
> | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).           | 
| 39 | 
  | 
 * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | 
  | 
 * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | 
  | 
 */ | 
| 57 | 
  | 
  /** | 
| 58 | 
  | 
   * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp" | 
| 59 | 
  | 
   * @brief A square matrix class | 
| 60 | 
< | 
   * @template Real the element type | 
| 61 | 
< | 
   * @template Dim the dimension of the square matrix | 
| 60 | 
> | 
   * \tparam Real the element type | 
| 61 | 
> | 
   * \tparam Dim the dimension of the square matrix | 
| 62 | 
  | 
   */ | 
| 63 | 
  | 
  template<typename Real, int Dim> | 
| 64 | 
  | 
  class SquareMatrix : public RectMatrix<Real, Dim, Dim> { | 
| 125 | 
  | 
      Real det; | 
| 126 | 
  | 
      return det; | 
| 127 | 
  | 
    } | 
| 128 | 
< | 
 | 
| 128 | 
> | 
     | 
| 129 | 
  | 
    /** Returns the trace of this matrix. */ | 
| 130 | 
  | 
    Real trace() const { | 
| 131 | 
  | 
      Real tmp = 0; | 
| 135 | 
  | 
 | 
| 136 | 
  | 
      return tmp; | 
| 137 | 
  | 
    } | 
| 138 | 
– | 
     | 
| 139 | 
– | 
    /** | 
| 140 | 
– | 
     * Returns the tensor contraction (double dot product) of two rank 2 | 
| 141 | 
– | 
     * tensors (or Matrices) | 
| 142 | 
– | 
     * @param t1 first tensor | 
| 143 | 
– | 
     * @param t2 second tensor | 
| 144 | 
– | 
     * @return the tensor contraction (double dot product) of t1 and t2 | 
| 145 | 
– | 
     */ | 
| 146 | 
– | 
    Real doubleDot( const SquareMatrix<Real, Dim>& t1, const SquareMatrix<Real, Dim>& t2 ) { | 
| 147 | 
– | 
      Real tmp; | 
| 148 | 
– | 
      tmp = 0; | 
| 149 | 
– | 
       | 
| 150 | 
– | 
      for (unsigned int i = 0; i < Dim; i++) | 
| 151 | 
– | 
        for (unsigned int j =0; j < Dim; j++) | 
| 152 | 
– | 
          tmp += t1[i][j] * t2[i][j]; | 
| 153 | 
– | 
       | 
| 154 | 
– | 
      return tmp; | 
| 155 | 
– | 
    } | 
| 138 | 
  | 
 | 
| 157 | 
– | 
 | 
| 139 | 
  | 
    /** Tests if this matrix is symmetrix. */             | 
| 140 | 
  | 
    bool isSymmetric() const { | 
| 141 | 
  | 
      for (unsigned int i = 0; i < Dim - 1; i++) | 
| 213 | 
  | 
     * @return true if success, otherwise return false | 
| 214 | 
  | 
     * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is | 
| 215 | 
  | 
     *     overwritten | 
| 216 | 
< | 
     * @param w will contain the eigenvalues of the matrix On return of this function | 
| 216 | 
> | 
     * @param d will contain the eigenvalues of the matrix On return of this function | 
| 217 | 
  | 
     * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are  | 
| 218 | 
  | 
     *    normalized and mutually orthogonal.  | 
| 219 | 
  | 
     */ | 
| 352 | 
  | 
    //// this is NEVER called | 
| 353 | 
  | 
    if ( i >= VTK_MAX_ROTATIONS ) { | 
| 354 | 
  | 
      std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl; | 
| 355 | 
+ | 
      if (n > 4) { | 
| 356 | 
+ | 
        delete[] b; | 
| 357 | 
+ | 
        delete[] z; | 
| 358 | 
+ | 
      }       | 
| 359 | 
  | 
      return 0; | 
| 360 | 
  | 
    } | 
| 361 | 
  | 
 |