| 55 |  | data_[i][j] = 0.0; | 
| 56 |  | } | 
| 57 |  |  | 
| 58 | + | /** Constructs and initializes every element of this matrix to a scalar */ | 
| 59 | + | SquareMatrix(Real s) : RectMatrix<Real, Dim, Dim>(s){ | 
| 60 | + | } | 
| 61 | + |  | 
| 62 | + | /** Constructs and initializes from an array */ | 
| 63 | + | SquareMatrix(Real* array) : RectMatrix<Real, Dim, Dim>(array){ | 
| 64 | + | } | 
| 65 | + |  | 
| 66 | + |  | 
| 67 |  | /** copy constructor */ | 
| 68 |  | SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) { | 
| 69 |  | } | 
| 208 |  | // normalized. | 
| 209 |  | template<typename Real, int Dim> | 
| 210 |  | int SquareMatrix<Real, Dim>::jacobi(SquareMatrix<Real, Dim>& a, Vector<Real, Dim>& w, | 
| 211 | < | SquareMatrix<Real, Dim>& v) { | 
| 212 | < | const int n = Dim; | 
| 213 | < | int i, j, k, iq, ip, numPos; | 
| 214 | < | Real tresh, theta, tau, t, sm, s, h, g, c, tmp; | 
| 215 | < | Real bspace[4], zspace[4]; | 
| 216 | < | Real *b = bspace; | 
| 217 | < | Real *z = zspace; | 
| 211 | > | SquareMatrix<Real, Dim>& v) { | 
| 212 | > | const int n = Dim; | 
| 213 | > | int i, j, k, iq, ip, numPos; | 
| 214 | > | Real tresh, theta, tau, t, sm, s, h, g, c, tmp; | 
| 215 | > | Real bspace[4], zspace[4]; | 
| 216 | > | Real *b = bspace; | 
| 217 | > | Real *z = zspace; | 
| 218 |  |  | 
| 219 | < | // only allocate memory if the matrix is large | 
| 220 | < | if (n > 4) | 
| 221 | < | { | 
| 222 | < | b = new Real[n]; | 
| 214 | < | z = new Real[n]; | 
| 219 | > | // only allocate memory if the matrix is large | 
| 220 | > | if (n > 4) { | 
| 221 | > | b = new Real[n]; | 
| 222 | > | z = new Real[n]; | 
| 223 |  | } | 
| 224 |  |  | 
| 225 | < | // initialize | 
| 226 | < | for (ip=0; ip<n; ip++) | 
| 227 | < | { | 
| 228 | < | for (iq=0; iq<n; iq++) | 
| 229 | < | { | 
| 230 | < | v(ip, iq) = 0.0; | 
| 223 | < | } | 
| 224 | < | v(ip, ip) = 1.0; | 
| 225 | > | // initialize | 
| 226 | > | for (ip=0; ip<n; ip++) { | 
| 227 | > | for (iq=0; iq<n; iq++) { | 
| 228 | > | v(ip, iq) = 0.0; | 
| 229 | > | } | 
| 230 | > | v(ip, ip) = 1.0; | 
| 231 |  | } | 
| 232 | < | for (ip=0; ip<n; ip++) | 
| 233 | < | { | 
| 234 | < | b[ip] = w[ip] = a(ip, ip); | 
| 229 | < | z[ip] = 0.0; | 
| 232 | > | for (ip=0; ip<n; ip++) { | 
| 233 | > | b[ip] = w[ip] = a(ip, ip); | 
| 234 | > | z[ip] = 0.0; | 
| 235 |  | } | 
| 236 |  |  | 
| 237 | < | // begin rotation sequence | 
| 238 | < | for (i=0; i<VTK_MAX_ROTATIONS; i++) | 
| 239 | < | { | 
| 240 | < | sm = 0.0; | 
| 241 | < | for (ip=0; ip<n-1; ip++) | 
| 242 | < | { | 
| 243 | < | for (iq=ip+1; iq<n; iq++) | 
| 239 | < | { | 
| 240 | < | sm += fabs(a(ip, iq)); | 
| 237 | > | // begin rotation sequence | 
| 238 | > | for (i=0; i<VTK_MAX_ROTATIONS; i++) { | 
| 239 | > | sm = 0.0; | 
| 240 | > | for (ip=0; ip<n-1; ip++) { | 
| 241 | > | for (iq=ip+1; iq<n; iq++) { | 
| 242 | > | sm += fabs(a(ip, iq)); | 
| 243 | > | } | 
| 244 |  | } | 
| 245 | < | } | 
| 246 | < | if (sm == 0.0) | 
| 247 | < | { | 
| 245 | < | break; | 
| 246 | < | } | 
| 245 | > | if (sm == 0.0) { | 
| 246 | > | break; | 
| 247 | > | } | 
| 248 |  |  | 
| 249 | < | if (i < 3)                                // first 3 sweeps | 
| 250 | < | { | 
| 251 | < | tresh = 0.2*sm/(n*n); | 
| 252 | < | } | 
| 253 | < | else | 
| 253 | < | { | 
| 254 | < | tresh = 0.0; | 
| 255 | < | } | 
| 249 | > | if (i < 3) {                                // first 3 sweeps | 
| 250 | > | tresh = 0.2*sm/(n*n); | 
| 251 | > | } else { | 
| 252 | > | tresh = 0.0; | 
| 253 | > | } | 
| 254 |  |  | 
| 255 | < | for (ip=0; ip<n-1; ip++) | 
| 256 | < | { | 
| 257 | < | for (iq=ip+1; iq<n; iq++) | 
| 260 | < | { | 
| 261 | < | g = 100.0*fabs(a(ip, iq)); | 
| 255 | > | for (ip=0; ip<n-1; ip++) { | 
| 256 | > | for (iq=ip+1; iq<n; iq++) { | 
| 257 | > | g = 100.0*fabs(a(ip, iq)); | 
| 258 |  |  | 
| 259 | < | // after 4 sweeps | 
| 260 | < | if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip]) | 
| 261 | < | && (fabs(w[iq])+g) == fabs(w[iq])) | 
| 262 | < | { | 
| 263 | < | a(ip, iq) = 0.0; | 
| 264 | < | } | 
| 265 | < | else if (fabs(a(ip, iq)) > tresh) | 
| 266 | < | { | 
| 267 | < | h = w[iq] - w[ip]; | 
| 268 | < | if ( (fabs(h)+g) == fabs(h)) | 
| 269 | < | { | 
| 270 | < | t = (a(ip, iq)) / h; | 
| 271 | < | } | 
| 272 | < | else | 
| 273 | < | { | 
| 274 | < | theta = 0.5*h / (a(ip, iq)); | 
| 275 | < | t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta)); | 
| 276 | < | if (theta < 0.0) | 
| 277 | < | { | 
| 278 | < | t = -t; | 
| 279 | < | } | 
| 280 | < | } | 
| 281 | < | c = 1.0 / sqrt(1+t*t); | 
| 282 | < | s = t*c; | 
| 283 | < | tau = s/(1.0+c); | 
| 284 | < | h = t*a(ip, iq); | 
| 285 | < | z[ip] -= h; | 
| 286 | < | z[iq] += h; | 
| 287 | < | w[ip] -= h; | 
| 288 | < | w[iq] += h; | 
| 289 | < | a(ip, iq)=0.0; | 
| 290 | < |  | 
| 291 | < | // ip already shifted left by 1 unit | 
| 292 | < | for (j = 0;j <= ip-1;j++) | 
| 293 | < | { | 
| 294 | < | VTK_ROTATE(a,j,ip,j,iq); | 
| 295 | < | } | 
| 296 | < | // ip and iq already shifted left by 1 unit | 
| 297 | < | for (j = ip+1;j <= iq-1;j++) | 
| 298 | < | { | 
| 299 | < | VTK_ROTATE(a,ip,j,j,iq); | 
| 304 | < | } | 
| 305 | < | // iq already shifted left by 1 unit | 
| 306 | < | for (j=iq+1; j<n; j++) | 
| 307 | < | { | 
| 308 | < | VTK_ROTATE(a,ip,j,iq,j); | 
| 309 | < | } | 
| 310 | < | for (j=0; j<n; j++) | 
| 311 | < | { | 
| 312 | < | VTK_ROTATE(v,j,ip,j,iq); | 
| 259 | > | // after 4 sweeps | 
| 260 | > | if (i > 3 && (fabs(w[ip])+g) == fabs(w[ip]) | 
| 261 | > | && (fabs(w[iq])+g) == fabs(w[iq])) { | 
| 262 | > | a(ip, iq) = 0.0; | 
| 263 | > | } else if (fabs(a(ip, iq)) > tresh) { | 
| 264 | > | h = w[iq] - w[ip]; | 
| 265 | > | if ( (fabs(h)+g) == fabs(h)) { | 
| 266 | > | t = (a(ip, iq)) / h; | 
| 267 | > | } else { | 
| 268 | > | theta = 0.5*h / (a(ip, iq)); | 
| 269 | > | t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta)); | 
| 270 | > | if (theta < 0.0) { | 
| 271 | > | t = -t; | 
| 272 | > | } | 
| 273 | > | } | 
| 274 | > | c = 1.0 / sqrt(1+t*t); | 
| 275 | > | s = t*c; | 
| 276 | > | tau = s/(1.0+c); | 
| 277 | > | h = t*a(ip, iq); | 
| 278 | > | z[ip] -= h; | 
| 279 | > | z[iq] += h; | 
| 280 | > | w[ip] -= h; | 
| 281 | > | w[iq] += h; | 
| 282 | > | a(ip, iq)=0.0; | 
| 283 | > |  | 
| 284 | > | // ip already shifted left by 1 unit | 
| 285 | > | for (j = 0;j <= ip-1;j++) { | 
| 286 | > | VTK_ROTATE(a,j,ip,j,iq); | 
| 287 | > | } | 
| 288 | > | // ip and iq already shifted left by 1 unit | 
| 289 | > | for (j = ip+1;j <= iq-1;j++) { | 
| 290 | > | VTK_ROTATE(a,ip,j,j,iq); | 
| 291 | > | } | 
| 292 | > | // iq already shifted left by 1 unit | 
| 293 | > | for (j=iq+1; j<n; j++) { | 
| 294 | > | VTK_ROTATE(a,ip,j,iq,j); | 
| 295 | > | } | 
| 296 | > | for (j=0; j<n; j++) { | 
| 297 | > | VTK_ROTATE(v,j,ip,j,iq); | 
| 298 | > | } | 
| 299 | > | } | 
| 300 |  | } | 
| 314 | – | } | 
| 301 |  | } | 
| 316 | – | } | 
| 302 |  |  | 
| 303 | < | for (ip=0; ip<n; ip++) | 
| 304 | < | { | 
| 305 | < | b[ip] += z[ip]; | 
| 306 | < | w[ip] = b[ip]; | 
| 307 | < | z[ip] = 0.0; | 
| 323 | < | } | 
| 303 | > | for (ip=0; ip<n; ip++) { | 
| 304 | > | b[ip] += z[ip]; | 
| 305 | > | w[ip] = b[ip]; | 
| 306 | > | z[ip] = 0.0; | 
| 307 | > | } | 
| 308 |  | } | 
| 309 |  |  | 
| 310 | < | //// this is NEVER called | 
| 311 | < | if ( i >= VTK_MAX_ROTATIONS ) | 
| 312 | < | { | 
| 313 | < | std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl; | 
| 330 | < | return 0; | 
| 310 | > | //// this is NEVER called | 
| 311 | > | if ( i >= VTK_MAX_ROTATIONS ) { | 
| 312 | > | std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl; | 
| 313 | > | return 0; | 
| 314 |  | } | 
| 315 |  |  | 
| 316 | < | // sort eigenfunctions                 these changes do not affect accuracy | 
| 317 | < | for (j=0; j<n-1; j++)                  // boundary incorrect | 
| 318 | < | { | 
| 336 | < | k = j; | 
| 337 | < | tmp = w[k]; | 
| 338 | < | for (i=j+1; i<n; i++)                // boundary incorrect, shifted already | 
| 339 | < | { | 
| 340 | < | if (w[i] >= tmp)                   // why exchage if same? | 
| 341 | < | { | 
| 342 | < | k = i; | 
| 316 | > | // sort eigenfunctions                 these changes do not affect accuracy | 
| 317 | > | for (j=0; j<n-1; j++) {                  // boundary incorrect | 
| 318 | > | k = j; | 
| 319 |  | tmp = w[k]; | 
| 320 | + | for (i=j+1; i<n; i++) {                // boundary incorrect, shifted already | 
| 321 | + | if (w[i] >= tmp) {                   // why exchage if same? | 
| 322 | + | k = i; | 
| 323 | + | tmp = w[k]; | 
| 324 | + | } | 
| 325 |  | } | 
| 326 | < | } | 
| 327 | < | if (k != j) | 
| 328 | < | { | 
| 329 | < | w[k] = w[j]; | 
| 330 | < | w[j] = tmp; | 
| 331 | < | for (i=0; i<n; i++) | 
| 332 | < | { | 
| 333 | < | tmp = v(i, j); | 
| 353 | < | v(i, j) = v(i, k); | 
| 354 | < | v(i, k) = tmp; | 
| 326 | > | if (k != j) { | 
| 327 | > | w[k] = w[j]; | 
| 328 | > | w[j] = tmp; | 
| 329 | > | for (i=0; i<n; i++) { | 
| 330 | > | tmp = v(i, j); | 
| 331 | > | v(i, j) = v(i, k); | 
| 332 | > | v(i, k) = tmp; | 
| 333 | > | } | 
| 334 |  | } | 
| 356 | – | } | 
| 335 |  | } | 
| 336 | < | // insure eigenvector consistency (i.e., Jacobi can compute vectors that | 
| 337 | < | // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can | 
| 338 | < | // reek havoc in hyperstreamline/other stuff. We will select the most | 
| 339 | < | // positive eigenvector. | 
| 340 | < | int ceil_half_n = (n >> 1) + (n & 1); | 
| 341 | < | for (j=0; j<n; j++) | 
| 342 | < | { | 
| 343 | < | for (numPos=0, i=0; i<n; i++) | 
| 344 | < | { | 
| 345 | < | if ( v(i, j) >= 0.0 ) | 
| 368 | < | { | 
| 369 | < | numPos++; | 
| 336 | > | // insure eigenvector consistency (i.e., Jacobi can compute vectors that | 
| 337 | > | // are negative of one another (.707,.707,0) and (-.707,-.707,0). This can | 
| 338 | > | // reek havoc in hyperstreamline/other stuff. We will select the most | 
| 339 | > | // positive eigenvector. | 
| 340 | > | int ceil_half_n = (n >> 1) + (n & 1); | 
| 341 | > | for (j=0; j<n; j++) { | 
| 342 | > | for (numPos=0, i=0; i<n; i++) { | 
| 343 | > | if ( v(i, j) >= 0.0 ) { | 
| 344 | > | numPos++; | 
| 345 | > | } | 
| 346 |  | } | 
| 347 | < | } | 
| 348 | < | //    if ( numPos < ceil(double(n)/double(2.0)) ) | 
| 349 | < | if ( numPos < ceil_half_n) | 
| 350 | < | { | 
| 351 | < | for(i=0; i<n; i++) | 
| 376 | < | { | 
| 377 | < | v(i, j) *= -1.0; | 
| 347 | > | //    if ( numPos < ceil(double(n)/double(2.0)) ) | 
| 348 | > | if ( numPos < ceil_half_n) { | 
| 349 | > | for (i=0; i<n; i++) { | 
| 350 | > | v(i, j) *= -1.0; | 
| 351 | > | } | 
| 352 |  | } | 
| 379 | – | } | 
| 353 |  | } | 
| 354 |  |  | 
| 355 | < | if (n > 4) | 
| 356 | < | { | 
| 357 | < | delete [] b; | 
| 385 | < | delete [] z; | 
| 355 | > | if (n > 4) { | 
| 356 | > | delete [] b; | 
| 357 | > | delete [] z; | 
| 358 |  | } | 
| 359 | < | return 1; | 
| 359 | > | return 1; | 
| 360 |  | } | 
| 361 |  |  | 
| 362 |  |  |