| 35 |  | * | 
| 36 |  | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 |  | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | < | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | < | * [4]  Vardeman & Gezelter, in progress (2009). | 
| 38 | > | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | > | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | > | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  | */ | 
| 42 |  |  | 
| 43 |  | /** | 
| 57 |  | /** | 
| 58 |  | * @class SquareMatrix SquareMatrix.hpp "math/SquareMatrix.hpp" | 
| 59 |  | * @brief A square matrix class | 
| 60 | < | * @template Real the element type | 
| 61 | < | * @template Dim the dimension of the square matrix | 
| 60 | > | * \tparam Real the element type | 
| 61 | > | * \tparam Dim the dimension of the square matrix | 
| 62 |  | */ | 
| 63 |  | template<typename Real, int Dim> | 
| 64 |  | class SquareMatrix : public RectMatrix<Real, Dim, Dim> { | 
| 125 |  | Real det; | 
| 126 |  | return det; | 
| 127 |  | } | 
| 128 | < |  | 
| 128 | > |  | 
| 129 |  | /** Returns the trace of this matrix. */ | 
| 130 |  | Real trace() const { | 
| 131 |  | Real tmp = 0; | 
| 135 |  |  | 
| 136 |  | return tmp; | 
| 137 |  | } | 
| 138 | + |  | 
| 139 | + | /** | 
| 140 | + | * Returns the tensor contraction (double dot product) of two rank 2 | 
| 141 | + | * tensors (or Matrices) | 
| 142 | + | * @param t1 first tensor | 
| 143 | + | * @param t2 second tensor | 
| 144 | + | * @return the tensor contraction (double dot product) of t1 and t2 | 
| 145 | + | */ | 
| 146 | + | Real doubleDot( const SquareMatrix<Real, Dim>& t1, const SquareMatrix<Real, Dim>& t2 ) { | 
| 147 | + | Real tmp; | 
| 148 | + | tmp = 0; | 
| 149 | + |  | 
| 150 | + | for (unsigned int i = 0; i < Dim; i++) | 
| 151 | + | for (unsigned int j =0; j < Dim; j++) | 
| 152 | + | tmp += t1[i][j] * t2[i][j]; | 
| 153 | + |  | 
| 154 | + | return tmp; | 
| 155 | + | } | 
| 156 |  |  | 
| 157 | + |  | 
| 158 |  | /** Tests if this matrix is symmetrix. */ | 
| 159 |  | bool isSymmetric() const { | 
| 160 |  | for (unsigned int i = 0; i < Dim - 1; i++) | 
| 182 |  | return false; | 
| 183 |  |  | 
| 184 |  | return true; | 
| 185 | + | } | 
| 186 | + |  | 
| 187 | + | /** | 
| 188 | + | * Returns a column vector that contains the elements from the | 
| 189 | + | * diagonal of m in the order R(0) = m(0,0), R(1) = m(1,1), and so | 
| 190 | + | * on. | 
| 191 | + | */ | 
| 192 | + | Vector<Real, Dim> diagonals() const { | 
| 193 | + | Vector<Real, Dim> result; | 
| 194 | + | for (unsigned int i = 0; i < Dim; i++) { | 
| 195 | + | result(i) = this->data_[i][i]; | 
| 196 | + | } | 
| 197 | + | return result; | 
| 198 |  | } | 
| 199 |  |  | 
| 200 |  | /** Tests if this matrix is the unit matrix. */ | 
| 232 |  | * @return true if success, otherwise return false | 
| 233 |  | * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is | 
| 234 |  | *     overwritten | 
| 235 | < | * @param w will contain the eigenvalues of the matrix On return of this function | 
| 235 | > | * @param d will contain the eigenvalues of the matrix On return of this function | 
| 236 |  | * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are | 
| 237 |  | *    normalized and mutually orthogonal. | 
| 238 |  | */ | 
| 371 |  | //// this is NEVER called | 
| 372 |  | if ( i >= VTK_MAX_ROTATIONS ) { | 
| 373 |  | std::cout << "vtkMath::Jacobi: Error extracting eigenfunctions" << std::endl; | 
| 374 | + | if (n > 4) { | 
| 375 | + | delete[] b; | 
| 376 | + | delete[] z; | 
| 377 | + | } | 
| 378 |  | return 0; | 
| 379 |  | } | 
| 380 |  |  |