| 32 |
|
#ifndef MATH_SQUAREMATRIX_HPP |
| 33 |
|
#define MATH_SQUAREMATRIX_HPP |
| 34 |
|
|
| 35 |
< |
#include "Vector3d.hpp" |
| 35 |
> |
#include "math/RectMatrix.hpp" |
| 36 |
|
|
| 37 |
|
namespace oopse { |
| 38 |
|
|
| 43 |
|
* @template Dim the dimension of the square matrix |
| 44 |
|
*/ |
| 45 |
|
template<typename Real, int Dim> |
| 46 |
< |
class SquareMatrix{ |
| 46 |
> |
class SquareMatrix : public RectMatrix<Real, Dim, Dim> { |
| 47 |
|
public: |
| 48 |
|
|
| 49 |
|
/** default constructor */ |
| 53 |
|
data_[i][j] = 0.0; |
| 54 |
|
} |
| 55 |
|
|
| 56 |
– |
/** Constructs and initializes every element of this matrix to a scalar */ |
| 57 |
– |
SquareMatrix(double s) { |
| 58 |
– |
for (unsigned int i = 0; i < Dim; i++) |
| 59 |
– |
for (unsigned int j = 0; j < Dim; j++) |
| 60 |
– |
data_[i][j] = s; |
| 61 |
– |
} |
| 62 |
– |
|
| 56 |
|
/** copy constructor */ |
| 57 |
< |
SquareMatrix(const SquareMatrix<Real, Dim>& m) { |
| 65 |
< |
*this = m; |
| 57 |
> |
SquareMatrix(const RectMatrix<Real, Dim, Dim>& m) : RectMatrix<Real, Dim, Dim>(m) { |
| 58 |
|
} |
| 59 |
|
|
| 68 |
– |
/** destructor*/ |
| 69 |
– |
~SquareMatrix() {} |
| 70 |
– |
|
| 60 |
|
/** copy assignment operator */ |
| 61 |
< |
SquareMatrix<Real, Dim>& operator =(const SquareMatrix<Real, Dim>& m) { |
| 62 |
< |
for (unsigned int i = 0; i < Dim; i++) |
| 74 |
< |
for (unsigned int j = 0; j < Dim; j++) |
| 75 |
< |
data_[i][j] = m.data_[i][j]; |
| 76 |
< |
} |
| 77 |
< |
|
| 78 |
< |
/** |
| 79 |
< |
* Return the reference of a single element of this matrix. |
| 80 |
< |
* @return the reference of a single element of this matrix |
| 81 |
< |
* @param i row index |
| 82 |
< |
* @param j colum index |
| 83 |
< |
*/ |
| 84 |
< |
double& operator()(unsigned int i, unsigned int j) { |
| 85 |
< |
return data_[i][j]; |
| 86 |
< |
} |
| 87 |
< |
|
| 88 |
< |
/** |
| 89 |
< |
* Return the value of a single element of this matrix. |
| 90 |
< |
* @return the value of a single element of this matrix |
| 91 |
< |
* @param i row index |
| 92 |
< |
* @param j colum index |
| 93 |
< |
*/ |
| 94 |
< |
double operator()(unsigned int i, unsigned int j) const { |
| 95 |
< |
return data_[i][j]; |
| 96 |
< |
} |
| 97 |
< |
|
| 98 |
< |
/** |
| 99 |
< |
* Returns a row of this matrix as a vector. |
| 100 |
< |
* @return a row of this matrix as a vector |
| 101 |
< |
* @param row the row index |
| 102 |
< |
*/ |
| 103 |
< |
Vector<Real, Dim> getRow(unsigned int row) { |
| 104 |
< |
Vector<Real, Dim> v; |
| 105 |
< |
|
| 106 |
< |
for (unsigned int i = 0; i < Dim; i++) |
| 107 |
< |
v[i] = data_[row][i]; |
| 108 |
< |
|
| 109 |
< |
return v; |
| 110 |
< |
} |
| 111 |
< |
|
| 112 |
< |
/** |
| 113 |
< |
* Sets a row of this matrix |
| 114 |
< |
* @param row the row index |
| 115 |
< |
* @param v the vector to be set |
| 116 |
< |
*/ |
| 117 |
< |
void setRow(unsigned int row, const Vector<Real, Dim>& v) { |
| 118 |
< |
Vector<Real, Dim> v; |
| 119 |
< |
|
| 120 |
< |
for (unsigned int i = 0; i < Dim; i++) |
| 121 |
< |
data_[row][i] = v[i]; |
| 122 |
< |
} |
| 123 |
< |
|
| 124 |
< |
/** |
| 125 |
< |
* Returns a column of this matrix as a vector. |
| 126 |
< |
* @return a column of this matrix as a vector |
| 127 |
< |
* @param col the column index |
| 128 |
< |
*/ |
| 129 |
< |
Vector<Real, Dim> getColum(unsigned int col) { |
| 130 |
< |
Vector<Real, Dim> v; |
| 131 |
< |
|
| 132 |
< |
for (unsigned int i = 0; i < Dim; i++) |
| 133 |
< |
v[i] = data_[i][col]; |
| 134 |
< |
|
| 135 |
< |
return v; |
| 136 |
< |
} |
| 137 |
< |
|
| 138 |
< |
/** |
| 139 |
< |
* Sets a column of this matrix |
| 140 |
< |
* @param col the column index |
| 141 |
< |
* @param v the vector to be set |
| 142 |
< |
*/ |
| 143 |
< |
void setColum(unsigned int col, const Vector<Real, Dim>& v){ |
| 144 |
< |
Vector<Real, Dim> v; |
| 145 |
< |
|
| 146 |
< |
for (unsigned int i = 0; i < Dim; i++) |
| 147 |
< |
data_[i][col] = v[i]; |
| 148 |
< |
} |
| 149 |
< |
|
| 150 |
< |
/** Negates the value of this matrix in place. */ |
| 151 |
< |
inline void negate() { |
| 152 |
< |
for (unsigned int i = 0; i < Dim; i++) |
| 153 |
< |
for (unsigned int j = 0; j < Dim; j++) |
| 154 |
< |
data_[i][j] = -data_[i][j]; |
| 155 |
< |
} |
| 156 |
< |
|
| 157 |
< |
/** |
| 158 |
< |
* Sets the value of this matrix to the negation of matrix m. |
| 159 |
< |
* @param m the source matrix |
| 160 |
< |
*/ |
| 161 |
< |
inline void negate(const SquareMatrix<Real, Dim>& m) { |
| 162 |
< |
for (unsigned int i = 0; i < Dim; i++) |
| 163 |
< |
for (unsigned int j = 0; j < Dim; j++) |
| 164 |
< |
data_[i][j] = -m.data_[i][j]; |
| 165 |
< |
} |
| 166 |
< |
|
| 167 |
< |
/** |
| 168 |
< |
* Sets the value of this matrix to the sum of itself and m (*this += m). |
| 169 |
< |
* @param m the other matrix |
| 170 |
< |
*/ |
| 171 |
< |
inline void add( const SquareMatrix<Real, Dim>& m ) { |
| 172 |
< |
for (unsigned int i = 0; i < Dim; i++) |
| 173 |
< |
for (unsigned int j = 0; j < Dim; j++) |
| 174 |
< |
data_[i][j] += m.data_[i][j]; |
| 175 |
< |
} |
| 176 |
< |
|
| 177 |
< |
/** |
| 178 |
< |
* Sets the value of this matrix to the sum of m1 and m2 (*this = m1 + m2). |
| 179 |
< |
* @param m1 the first matrix |
| 180 |
< |
* @param m2 the second matrix |
| 181 |
< |
*/ |
| 182 |
< |
inline void add( const SquareMatrix<Real, Dim>& m1, const SquareMatrix<Real, Dim>& m2 ) { |
| 183 |
< |
for (unsigned int i = 0; i < Dim; i++) |
| 184 |
< |
for (unsigned int j = 0; j < Dim; j++) |
| 185 |
< |
data_[i][j] = m1.data_[i][j] + m2.data_[i][j]; |
| 186 |
< |
} |
| 187 |
< |
|
| 188 |
< |
/** |
| 189 |
< |
* Sets the value of this matrix to the difference of itself and m (*this -= m). |
| 190 |
< |
* @param m the other matrix |
| 191 |
< |
*/ |
| 192 |
< |
inline void sub( const SquareMatrix<Real, Dim>& m ) { |
| 193 |
< |
for (unsigned int i = 0; i < Dim; i++) |
| 194 |
< |
for (unsigned int j = 0; j < Dim; j++) |
| 195 |
< |
data_[i][j] -= m.data_[i][j]; |
| 196 |
< |
} |
| 197 |
< |
|
| 198 |
< |
/** |
| 199 |
< |
* Sets the value of this matrix to the difference of matrix m1 and m2 (*this = m1 - m2). |
| 200 |
< |
* @param m1 the first matrix |
| 201 |
< |
* @param m2 the second matrix |
| 202 |
< |
*/ |
| 203 |
< |
inline void sub( const SquareMatrix<Real, Dim>& m1, const Vector &m2){ |
| 204 |
< |
for (unsigned int i = 0; i < Dim; i++) |
| 205 |
< |
for (unsigned int j = 0; j < Dim; j++) |
| 206 |
< |
data_[i][j] = m1.data_[i][j] - m2.data_[i][j]; |
| 207 |
< |
} |
| 208 |
< |
|
| 209 |
< |
/** |
| 210 |
< |
* Sets the value of this matrix to the scalar multiplication of itself (*this *= s). |
| 211 |
< |
* @param s the scalar value |
| 212 |
< |
*/ |
| 213 |
< |
inline void mul( double s ) { |
| 214 |
< |
for (unsigned int i = 0; i < Dim; i++) |
| 215 |
< |
for (unsigned int j = 0; j < Dim; j++) |
| 216 |
< |
data_[i][j] *= s; |
| 217 |
< |
} |
| 218 |
< |
|
| 219 |
< |
/** |
| 220 |
< |
* Sets the value of this matrix to the scalar multiplication of matrix m (*this = s * m). |
| 221 |
< |
* @param s the scalar value |
| 222 |
< |
* @param m the matrix |
| 223 |
< |
*/ |
| 224 |
< |
inline void mul( double s, const SquareMatrix<Real, Dim>& m ) { |
| 225 |
< |
for (unsigned int i = 0; i < Dim; i++) |
| 226 |
< |
for (unsigned int j = 0; j < Dim; j++) |
| 227 |
< |
data_[i][j] = s * m.data_[i][j]; |
| 228 |
< |
} |
| 229 |
< |
|
| 230 |
< |
/** |
| 231 |
< |
* Sets the value of this matrix to the multiplication of this matrix and matrix m |
| 232 |
< |
* (*this = *this * m). |
| 233 |
< |
* @param m the matrix |
| 234 |
< |
*/ |
| 235 |
< |
inline void mul(const SquareMatrix<Real, Dim>& m ) { |
| 236 |
< |
SquareMatrix<Real, Dim> tmp(*this); |
| 237 |
< |
|
| 238 |
< |
for (unsigned int i = 0; i < Dim; i++) |
| 239 |
< |
for (unsigned int j = 0; j < Dim; j++) { |
| 240 |
< |
|
| 241 |
< |
data_[i][j] = 0.0; |
| 242 |
< |
for (unsigned int k = 0; k < Dim; k++) |
| 243 |
< |
data_[i][j] = tmp.data_[i][k] * m.data_[k][j] |
| 244 |
< |
} |
| 245 |
< |
} |
| 246 |
< |
|
| 247 |
< |
/** |
| 248 |
< |
* Sets the value of this matrix to the left multiplication of matrix m into itself |
| 249 |
< |
* (*this = m * *this). |
| 250 |
< |
* @param m the matrix |
| 251 |
< |
*/ |
| 252 |
< |
inline void leftmul(const SquareMatrix<Real, Dim>& m ) { |
| 253 |
< |
SquareMatrix<Real, Dim> tmp(*this); |
| 254 |
< |
|
| 255 |
< |
for (unsigned int i = 0; i < Dim; i++) |
| 256 |
< |
for (unsigned int j = 0; j < Dim; j++) { |
| 257 |
< |
|
| 258 |
< |
data_[i][j] = 0.0; |
| 259 |
< |
for (unsigned int k = 0; k < Dim; k++) |
| 260 |
< |
data_[i][j] = m.data_[i][k] * tmp.data_[k][j] |
| 261 |
< |
} |
| 262 |
< |
} |
| 263 |
< |
|
| 264 |
< |
/** |
| 265 |
< |
* Sets the value of this matrix to the multiplication of matrix m1 and matrix m2 |
| 266 |
< |
* (*this = m1 * m2). |
| 267 |
< |
* @param m1 the first matrix |
| 268 |
< |
* @param m2 the second matrix |
| 269 |
< |
*/ |
| 270 |
< |
inline void mul(const SquareMatrix<Real, Dim>& m1, |
| 271 |
< |
const SquareMatrix<Real, Dim>& m2 ) { |
| 272 |
< |
for (unsigned int i = 0; i < Dim; i++) |
| 273 |
< |
for (unsigned int j = 0; j < Dim; j++) { |
| 274 |
< |
|
| 275 |
< |
data_[i][j] = 0.0; |
| 276 |
< |
for (unsigned int k = 0; k < Dim; k++) |
| 277 |
< |
data_[i][j] = m1.data_[i][k] * m2.data_[k][j] |
| 278 |
< |
} |
| 279 |
< |
|
| 280 |
< |
} |
| 281 |
< |
|
| 282 |
< |
/** |
| 283 |
< |
* Sets the value of this matrix to the scalar division of itself (*this /= s ). |
| 284 |
< |
* @param s the scalar value |
| 285 |
< |
*/ |
| 286 |
< |
inline void div( double s) { |
| 287 |
< |
for (unsigned int i = 0; i < Dim; i++) |
| 288 |
< |
for (unsigned int j = 0; j < Dim; j++) |
| 289 |
< |
data_[i][j] /= s; |
| 290 |
< |
} |
| 291 |
< |
|
| 292 |
< |
inline SquareMatrix<Real, Dim>& operator=(const SquareMatrix<Real, Dim>& v) { |
| 293 |
< |
if (this == &v) |
| 294 |
< |
return *this; |
| 295 |
< |
|
| 296 |
< |
for (unsigned int i = 0; i < Dim; i++) |
| 297 |
< |
data_[i] = v[i]; |
| 298 |
< |
|
| 61 |
> |
SquareMatrix<Real, Dim>& operator =(const RectMatrix<Real, Dim, Dim>& m) { |
| 62 |
> |
RectMatrix<Real, Dim, Dim>::operator=(m); |
| 63 |
|
return *this; |
| 64 |
|
} |
| 65 |
< |
|
| 66 |
< |
/** |
| 303 |
< |
* Sets the value of this matrix to the scalar division of matrix v1 (*this = v1 / s ). |
| 304 |
< |
* @paran v1 the source matrix |
| 305 |
< |
* @param s the scalar value |
| 306 |
< |
*/ |
| 307 |
< |
inline void div( const SquareMatrix<Real, Dim>& v1, double s ) { |
| 308 |
< |
for (unsigned int i = 0; i < Dim; i++) |
| 309 |
< |
data_[i] = v1.data_[i] / s; |
| 310 |
< |
} |
| 65 |
> |
|
| 66 |
> |
/** Retunrs an identity matrix*/ |
| 67 |
|
|
| 68 |
< |
/** |
| 69 |
< |
* Multiples a scalar into every element of this matrix. |
| 70 |
< |
* @param s the scalar value |
| 315 |
< |
*/ |
| 316 |
< |
SquareMatrix<Real, Dim>& operator *=(const double s) { |
| 317 |
< |
this->mul(s); |
| 318 |
< |
return *this; |
| 319 |
< |
} |
| 320 |
< |
|
| 321 |
< |
/** |
| 322 |
< |
* Divides every element of this matrix by a scalar. |
| 323 |
< |
* @param s the scalar value |
| 324 |
< |
*/ |
| 325 |
< |
SquareMatrix<Real, Dim>& operator /=(const double s) { |
| 326 |
< |
this->div(s); |
| 327 |
< |
return *this; |
| 328 |
< |
} |
| 329 |
< |
|
| 330 |
< |
/** |
| 331 |
< |
* Sets the value of this matrix to the sum of the other matrix and itself (*this += m). |
| 332 |
< |
* @param m the other matrix |
| 333 |
< |
*/ |
| 334 |
< |
SquareMatrix<Real, Dim>& operator += (const SquareMatrix<Real, Dim>& m) { |
| 335 |
< |
add(m); |
| 336 |
< |
return *this; |
| 337 |
< |
} |
| 338 |
< |
|
| 339 |
< |
/** |
| 340 |
< |
* Sets the value of this matrix to the differerence of itself and the other matrix (*this -= m) |
| 341 |
< |
* @param m the other matrix |
| 342 |
< |
*/ |
| 343 |
< |
SquareMatrix<Real, Dim>& operator -= (const SquareMatrix<Real, Dim>& m){ |
| 344 |
< |
sub(m); |
| 345 |
< |
return *this; |
| 346 |
< |
} |
| 347 |
< |
|
| 348 |
< |
/** set this matrix to an identity matrix*/ |
| 349 |
< |
|
| 350 |
< |
void identity() { |
| 68 |
> |
static SquareMatrix<Real, Dim> identity() { |
| 69 |
> |
SquareMatrix<Real, Dim> m; |
| 70 |
> |
|
| 71 |
|
for (unsigned int i = 0; i < Dim; i++) |
| 72 |
< |
for (unsigned int i = 0; i < Dim; i++) |
| 72 |
> |
for (unsigned int j = 0; j < Dim; j++) |
| 73 |
|
if (i == j) |
| 74 |
< |
data_[i][j] = 1.0; |
| 74 |
> |
m(i, j) = 1.0; |
| 75 |
|
else |
| 76 |
< |
data_[i][j] = 0.0; |
| 357 |
< |
} |
| 76 |
> |
m(i, j) = 0.0; |
| 77 |
|
|
| 78 |
< |
/** Sets the value of this matrix to the inversion of itself. */ |
| 360 |
< |
void inverse() { |
| 361 |
< |
inverse(*this); |
| 362 |
< |
} |
| 363 |
< |
|
| 364 |
< |
/** |
| 365 |
< |
* Sets the value of this matrix to the inversion of other matrix. |
| 366 |
< |
* @ param m the source matrix |
| 367 |
< |
*/ |
| 368 |
< |
void inverse(const SquareMatrix<Real, Dim>& m); |
| 369 |
< |
|
| 370 |
< |
/** Sets the value of this matrix to the transpose of itself. */ |
| 371 |
< |
void transpose() { |
| 372 |
< |
for (unsigned int i = 0; i < Dim - 1; i++) |
| 373 |
< |
for (unsigned int j = i; j < Dim; j++) |
| 374 |
< |
std::swap(data_[i][j], data_[j][i]); |
| 78 |
> |
return m; |
| 79 |
|
} |
| 80 |
|
|
| 81 |
< |
/** |
| 82 |
< |
* Sets the value of this matrix to the transpose of other matrix. |
| 83 |
< |
* @ param m the source matrix |
| 380 |
< |
*/ |
| 381 |
< |
void transpose(const SquareMatrix<Real, Dim>& m) { |
| 382 |
< |
|
| 383 |
< |
if (this == &m) { |
| 384 |
< |
transpose(); |
| 385 |
< |
} else { |
| 386 |
< |
for (unsigned int i = 0; i < Dim; i++) |
| 387 |
< |
for (unsigned int j =0; j < Dim; j++) |
| 388 |
< |
data_[i][j] = m.data_[i][j]; |
| 389 |
< |
} |
| 390 |
< |
} |
| 81 |
> |
/** Retunrs the inversion of this matrix. */ |
| 82 |
> |
SquareMatrix<Real, Dim> inverse() { |
| 83 |
> |
SquareMatrix<Real, Dim> result; |
| 84 |
|
|
| 85 |
+ |
return result; |
| 86 |
+ |
} |
| 87 |
+ |
|
| 88 |
|
/** Returns the determinant of this matrix. */ |
| 89 |
|
double determinant() const { |
| 90 |
< |
|
| 90 |
> |
double det; |
| 91 |
> |
return det; |
| 92 |
|
} |
| 93 |
|
|
| 94 |
|
/** Returns the trace of this matrix. */ |
| 105 |
|
bool isSymmetric() const { |
| 106 |
|
for (unsigned int i = 0; i < Dim - 1; i++) |
| 107 |
|
for (unsigned int j = i; j < Dim; j++) |
| 108 |
< |
if (fabs(data_[i][j] - data_[j][i]) > epsilon) |
| 108 |
> |
if (fabs(data_[i][j] - data_[j][i]) > oopse::epsilon) |
| 109 |
|
return false; |
| 110 |
|
|
| 111 |
|
return true; |
| 112 |
|
} |
| 113 |
|
|
| 114 |
< |
/** Tests if this matrix is orthogona. */ |
| 115 |
< |
bool isOrthogonal() const { |
| 116 |
< |
SquareMatrix<Real, Dim> t(*this); |
| 114 |
> |
/** Tests if this matrix is orthogonal. */ |
| 115 |
> |
bool isOrthogonal() { |
| 116 |
> |
SquareMatrix<Real, Dim> tmp; |
| 117 |
|
|
| 118 |
< |
t.transpose(); |
| 118 |
> |
tmp = *this * transpose(); |
| 119 |
|
|
| 120 |
< |
return isUnitMatrix(*this * t); |
| 120 |
> |
return tmp.isDiagonal(); |
| 121 |
|
} |
| 122 |
|
|
| 123 |
|
/** Tests if this matrix is diagonal. */ |
| 124 |
|
bool isDiagonal() const { |
| 125 |
|
for (unsigned int i = 0; i < Dim ; i++) |
| 126 |
|
for (unsigned int j = 0; j < Dim; j++) |
| 127 |
< |
if (i !=j && fabs(data_[i][j]) > epsilon) |
| 127 |
> |
if (i !=j && fabs(data_[i][j]) > oopse::epsilon) |
| 128 |
|
return false; |
| 129 |
|
|
| 130 |
|
return true; |
| 136 |
|
return false; |
| 137 |
|
|
| 138 |
|
for (unsigned int i = 0; i < Dim ; i++) |
| 139 |
< |
if (fabs(data_[i][i] - 1) > epsilon) |
| 139 |
> |
if (fabs(data_[i][i] - 1) > oopse::epsilon) |
| 140 |
|
return false; |
| 141 |
|
|
| 142 |
|
return true; |
| 143 |
+ |
} |
| 144 |
+ |
|
| 145 |
+ |
void diagonalize() { |
| 146 |
+ |
jacobi(m, eigenValues, ortMat); |
| 147 |
|
} |
| 447 |
– |
|
| 448 |
– |
protected: |
| 449 |
– |
double data_[Dim][Dim]; /**< matrix element */ |
| 148 |
|
|
| 149 |
+ |
/** |
| 150 |
+ |
* Finds the eigenvalues and eigenvectors of a symmetric matrix |
| 151 |
+ |
* @param eigenvals a reference to a vector3 where the |
| 152 |
+ |
* eigenvalues will be stored. The eigenvalues are ordered so |
| 153 |
+ |
* that eigenvals[0] <= eigenvals[1] <= eigenvals[2]. |
| 154 |
+ |
* @return an orthogonal matrix whose ith column is an |
| 155 |
+ |
* eigenvector for the eigenvalue eigenvals[i] |
| 156 |
+ |
*/ |
| 157 |
+ |
SquareMatrix<Real, Dim> findEigenvectors(Vector<Real, Dim>& eigenValues) { |
| 158 |
+ |
SquareMatrix<Real, Dim> ortMat; |
| 159 |
+ |
|
| 160 |
+ |
if ( !isSymmetric()){ |
| 161 |
+ |
throw(); |
| 162 |
+ |
} |
| 163 |
+ |
|
| 164 |
+ |
SquareMatrix<Real, Dim> m(*this); |
| 165 |
+ |
jacobi(m, eigenValues, ortMat); |
| 166 |
+ |
|
| 167 |
+ |
return ortMat; |
| 168 |
+ |
} |
| 169 |
+ |
/** |
| 170 |
+ |
* Jacobi iteration routines for computing eigenvalues/eigenvectors of |
| 171 |
+ |
* real symmetric matrix |
| 172 |
+ |
* |
| 173 |
+ |
* @return true if success, otherwise return false |
| 174 |
+ |
* @param a source matrix |
| 175 |
+ |
* @param w output eigenvalues |
| 176 |
+ |
* @param v output eigenvectors |
| 177 |
+ |
*/ |
| 178 |
+ |
void jacobi(const SquareMatrix<Real, Dim>& a, |
| 179 |
+ |
Vector<Real, Dim>& w, |
| 180 |
+ |
SquareMatrix<Real, Dim>& v); |
| 181 |
|
};//end SquareMatrix |
| 182 |
|
|
| 453 |
– |
|
| 454 |
– |
/** Negate the value of every element of this matrix. */ |
| 455 |
– |
template<typename Real, int Dim> |
| 456 |
– |
inline SquareMatrix<Real, Dim> operator -(const SquareMatrix& m) { |
| 457 |
– |
SquareMatrix<Real, Dim> result(m); |
| 183 |
|
|
| 184 |
< |
result.negate(); |
| 184 |
> |
#define ROT(a,i,j,k,l) g=a(i, j);h=a(k, l);a(i, j)=g-s*(h+g*tau);a(k, l)=h+s*(g-h*tau) |
| 185 |
> |
#define MAX_ROTATIONS 60 |
| 186 |
|
|
| 187 |
< |
return result; |
| 187 |
> |
template<Real, int Dim> |
| 188 |
> |
void SquareMatrix<Real, int Dim>::jacobi(SquareMatrix<Real, Dim>& a, |
| 189 |
> |
Vector<Real, Dim>& w, |
| 190 |
> |
SquareMatrix<Real, Dim>& v) { |
| 191 |
> |
const int N = Dim; |
| 192 |
> |
int i, j, k, iq, ip; |
| 193 |
> |
double tresh, theta, tau, t, sm, s, h, g, c; |
| 194 |
> |
double tmp; |
| 195 |
> |
Vector<Real, Dim> b, z; |
| 196 |
> |
|
| 197 |
> |
// initialize |
| 198 |
> |
for (ip=0; ip<N; ip++) |
| 199 |
> |
{ |
| 200 |
> |
for (iq=0; iq<N; iq++) v(ip, iq) = 0.0; |
| 201 |
> |
v(ip, ip) = 1.0; |
| 202 |
|
} |
| 203 |
< |
|
| 204 |
< |
/** |
| 205 |
< |
* Return the sum of two matrixes (m1 + m2). |
| 206 |
< |
* @return the sum of two matrixes |
| 207 |
< |
* @param m1 the first matrix |
| 468 |
< |
* @param m2 the second matrix |
| 469 |
< |
*/ |
| 470 |
< |
template<typename Real, int Dim> |
| 471 |
< |
inline SquareMatrix<Real, Dim> operator + (const SquareMatrix<Real, Dim>& m1, |
| 472 |
< |
const SquareMatrix<Real, Dim>& m2) { |
| 473 |
< |
SquareMatrix<Real, Dim>result; |
| 203 |
> |
for (ip=0; ip<N; ip++) |
| 204 |
> |
{ |
| 205 |
> |
b(ip) = w(ip) = a(ip, ip); |
| 206 |
> |
z(ip) = 0.0; |
| 207 |
> |
} |
| 208 |
|
|
| 209 |
< |
result.add(m1, m2); |
| 209 |
> |
// begin rotation sequence |
| 210 |
> |
for (i=0; i<MAX_ROTATIONS; i++) |
| 211 |
> |
{ |
| 212 |
> |
sm = 0.0; |
| 213 |
> |
for (ip=0; ip<2; ip++) |
| 214 |
> |
{ |
| 215 |
> |
for (iq=ip+1; iq<N; iq++) sm += fabs(a(ip, iq)); |
| 216 |
> |
} |
| 217 |
> |
if (sm == 0.0) break; |
| 218 |
|
|
| 219 |
< |
return result; |
| 220 |
< |
} |
| 479 |
< |
|
| 480 |
< |
/** |
| 481 |
< |
* Return the difference of two matrixes (m1 - m2). |
| 482 |
< |
* @return the sum of two matrixes |
| 483 |
< |
* @param m1 the first matrix |
| 484 |
< |
* @param m2 the second matrix |
| 485 |
< |
*/ |
| 486 |
< |
template<typename Real, int Dim> |
| 487 |
< |
inline SquareMatrix<Real, Dim> operator - (const SquareMatrix<Real, Dim>& m1, |
| 488 |
< |
const SquareMatrix<Real, Dim>& m2) { |
| 489 |
< |
SquareMatrix<Real, Dim>result; |
| 219 |
> |
if (i < 4) tresh = 0.2*sm/(9); |
| 220 |
> |
else tresh = 0.0; |
| 221 |
|
|
| 222 |
< |
result.sub(m1, m2); |
| 222 |
> |
for (ip=0; ip<2; ip++) |
| 223 |
> |
{ |
| 224 |
> |
for (iq=ip+1; iq<N; iq++) |
| 225 |
> |
{ |
| 226 |
> |
g = 100.0*fabs(a(ip, iq)); |
| 227 |
> |
if (i > 4 && (fabs(w(ip))+g) == fabs(w(ip)) |
| 228 |
> |
&& (fabs(w(iq))+g) == fabs(w(iq))) |
| 229 |
> |
{ |
| 230 |
> |
a(ip, iq) = 0.0; |
| 231 |
> |
} |
| 232 |
> |
else if (fabs(a(ip, iq)) > tresh) |
| 233 |
> |
{ |
| 234 |
> |
h = w(iq) - w(ip); |
| 235 |
> |
if ( (fabs(h)+g) == fabs(h)) t = (a(ip, iq)) / h; |
| 236 |
> |
else |
| 237 |
> |
{ |
| 238 |
> |
theta = 0.5*h / (a(ip, iq)); |
| 239 |
> |
t = 1.0 / (fabs(theta)+sqrt(1.0+theta*theta)); |
| 240 |
> |
if (theta < 0.0) t = -t; |
| 241 |
> |
} |
| 242 |
> |
c = 1.0 / sqrt(1+t*t); |
| 243 |
> |
s = t*c; |
| 244 |
> |
tau = s/(1.0+c); |
| 245 |
> |
h = t*a(ip, iq); |
| 246 |
> |
z(ip) -= h; |
| 247 |
> |
z(iq) += h; |
| 248 |
> |
w(ip) -= h; |
| 249 |
> |
w(iq) += h; |
| 250 |
> |
a(ip, iq)=0.0; |
| 251 |
> |
for (j=0;j<ip-1;j++) |
| 252 |
> |
{ |
| 253 |
> |
ROT(a,j,ip,j,iq); |
| 254 |
> |
} |
| 255 |
> |
for (j=ip+1;j<iq-1;j++) |
| 256 |
> |
{ |
| 257 |
> |
ROT(a,ip,j,j,iq); |
| 258 |
> |
} |
| 259 |
> |
for (j=iq+1; j<N; j++) |
| 260 |
> |
{ |
| 261 |
> |
ROT(a,ip,j,iq,j); |
| 262 |
> |
} |
| 263 |
> |
for (j=0; j<N; j++) |
| 264 |
> |
{ |
| 265 |
> |
ROT(v,j,ip,j,iq); |
| 266 |
> |
} |
| 267 |
> |
} |
| 268 |
> |
} |
| 269 |
> |
} |
| 270 |
|
|
| 271 |
< |
return result; |
| 271 |
> |
for (ip=0; ip<N; ip++) |
| 272 |
> |
{ |
| 273 |
> |
b(ip) += z(ip); |
| 274 |
> |
w(ip) = b(ip); |
| 275 |
> |
z(ip) = 0.0; |
| 276 |
> |
} |
| 277 |
|
} |
| 495 |
– |
|
| 496 |
– |
/** |
| 497 |
– |
* Return the multiplication of two matrixes (m1 * m2). |
| 498 |
– |
* @return the multiplication of two matrixes |
| 499 |
– |
* @param m1 the first matrix |
| 500 |
– |
* @param m2 the second matrix |
| 501 |
– |
*/ |
| 502 |
– |
template<typename Real, int Dim> |
| 503 |
– |
inline SquareMatrix<Real, Dim> operator *(const SquareMatrix<Real, Dim>& m1, |
| 504 |
– |
const SquareMatrix<Real, Dim>& m2) { |
| 505 |
– |
SquareMatrix<Real, Dim> result; |
| 278 |
|
|
| 279 |
< |
result.mul(m1, m2); |
| 279 |
> |
if ( i >= MAX_ROTATIONS ) |
| 280 |
> |
return false; |
| 281 |
|
|
| 282 |
< |
return result; |
| 282 |
> |
// sort eigenfunctions |
| 283 |
> |
for (j=0; j<N; j++) |
| 284 |
> |
{ |
| 285 |
> |
k = j; |
| 286 |
> |
tmp = w(k); |
| 287 |
> |
for (i=j; i<N; i++) |
| 288 |
> |
{ |
| 289 |
> |
if (w(i) >= tmp) |
| 290 |
> |
{ |
| 291 |
> |
k = i; |
| 292 |
> |
tmp = w(k); |
| 293 |
> |
} |
| 294 |
> |
} |
| 295 |
> |
if (k != j) |
| 296 |
> |
{ |
| 297 |
> |
w(k) = w(j); |
| 298 |
> |
w(j) = tmp; |
| 299 |
> |
for (i=0; i<N; i++) |
| 300 |
> |
{ |
| 301 |
> |
tmp = v(i, j); |
| 302 |
> |
v(i, j) = v(i, k); |
| 303 |
> |
v(i, k) = tmp; |
| 304 |
> |
} |
| 305 |
> |
} |
| 306 |
|
} |
| 511 |
– |
|
| 512 |
– |
/** |
| 513 |
– |
* Return the multiplication of matrixes m and vector v (m * v). |
| 514 |
– |
* @return the multiplication of matrixes and vector |
| 515 |
– |
* @param m the matrix |
| 516 |
– |
* @param v the vector |
| 517 |
– |
*/ |
| 518 |
– |
template<typename Real, int Dim> |
| 519 |
– |
inline Vector<Real, Dim> operator *(const SquareMatrix<Real, Dim>& m, |
| 520 |
– |
const SquareMatrix<Real, Dim>& v) { |
| 521 |
– |
Vector<Real, Dim> result; |
| 307 |
|
|
| 308 |
< |
for (unsigned int i = 0; i < Dim ; i++) |
| 309 |
< |
for (unsigned int j = 0; j < Dim ; j++) |
| 310 |
< |
result[i] += m(i, j) * v[j]; |
| 311 |
< |
|
| 312 |
< |
return result; |
| 308 |
> |
// insure eigenvector consistency (i.e., Jacobi can compute |
| 309 |
> |
// vectors that are negative of one another (.707,.707,0) and |
| 310 |
> |
// (-.707,-.707,0). This can reek havoc in |
| 311 |
> |
// hyperstreamline/other stuff. We will select the most |
| 312 |
> |
// positive eigenvector. |
| 313 |
> |
int numPos; |
| 314 |
> |
for (j=0; j<N; j++) |
| 315 |
> |
{ |
| 316 |
> |
for (numPos=0, i=0; i<N; i++) if ( v(i, j) >= 0.0 ) numPos++; |
| 317 |
> |
if ( numPos < 2 ) for(i=0; i<N; i++) v(i, j) *= -1.0; |
| 318 |
|
} |
| 319 |
+ |
|
| 320 |
+ |
return true; |
| 321 |
|
} |
| 322 |
+ |
|
| 323 |
+ |
#undef ROT |
| 324 |
+ |
#undef MAX_ROTATIONS |
| 325 |
+ |
|
| 326 |
+ |
} |
| 327 |
+ |
|
| 328 |
+ |
|
| 329 |
+ |
} |
| 330 |
|
#endif //MATH_SQUAREMATRIX_HPP |