| 1 |
tim |
70 |
/* |
| 2 |
|
|
* Copyright (C) 2000-2004 Object Oriented Parallel Simulation Engine (OOPSE) project |
| 3 |
|
|
* |
| 4 |
|
|
* Contact: oopse@oopse.org |
| 5 |
|
|
* |
| 6 |
|
|
* This program is free software; you can redistribute it and/or |
| 7 |
|
|
* modify it under the terms of the GNU Lesser General Public License |
| 8 |
|
|
* as published by the Free Software Foundation; either version 2.1 |
| 9 |
|
|
* of the License, or (at your option) any later version. |
| 10 |
|
|
* All we ask is that proper credit is given for our work, which includes |
| 11 |
|
|
* - but is not limited to - adding the above copyright notice to the beginning |
| 12 |
|
|
* of your source code files, and to any copyright notice that you may distribute |
| 13 |
|
|
* with programs based on this work. |
| 14 |
|
|
* |
| 15 |
|
|
* This program is distributed in the hope that it will be useful, |
| 16 |
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 17 |
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 18 |
|
|
* GNU Lesser General Public License for more details. |
| 19 |
|
|
* |
| 20 |
|
|
* You should have received a copy of the GNU Lesser General Public License |
| 21 |
|
|
* along with this program; if not, write to the Free Software |
| 22 |
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| 23 |
|
|
* |
| 24 |
|
|
*/ |
| 25 |
|
|
|
| 26 |
|
|
/** |
| 27 |
|
|
* @file SquareMatrix3.hpp |
| 28 |
|
|
* @author Teng Lin |
| 29 |
|
|
* @date 10/11/2004 |
| 30 |
|
|
* @version 1.0 |
| 31 |
|
|
*/ |
| 32 |
tim |
93 |
#ifndef MATH_SQUAREMATRIX_HPP |
| 33 |
|
|
#define MATH_SQUAREMATRIX_HPP |
| 34 |
tim |
70 |
|
| 35 |
tim |
93 |
#include "Quaternion.hpp" |
| 36 |
tim |
70 |
#include "SquareMatrix.hpp" |
| 37 |
tim |
93 |
#include "Vector3.hpp" |
| 38 |
|
|
|
| 39 |
tim |
70 |
namespace oopse { |
| 40 |
|
|
|
| 41 |
|
|
template<typename Real> |
| 42 |
|
|
class SquareMatrix3 : public SquareMatrix<Real, 3> { |
| 43 |
|
|
public: |
| 44 |
|
|
|
| 45 |
|
|
/** default constructor */ |
| 46 |
|
|
SquareMatrix3() : SquareMatrix<Real, 3>() { |
| 47 |
|
|
} |
| 48 |
|
|
|
| 49 |
|
|
/** copy constructor */ |
| 50 |
|
|
SquareMatrix3(const SquareMatrix<Real, 3>& m) : SquareMatrix<Real, 3>(m) { |
| 51 |
|
|
} |
| 52 |
|
|
|
| 53 |
tim |
93 |
SquareMatrix3( const Vector3<Real>& eulerAngles) { |
| 54 |
|
|
setupRotMat(eulerAngles); |
| 55 |
|
|
} |
| 56 |
|
|
|
| 57 |
|
|
SquareMatrix3(Real phi, Real theta, Real psi) { |
| 58 |
|
|
setupRotMat(phi, theta, psi); |
| 59 |
|
|
} |
| 60 |
|
|
|
| 61 |
|
|
SquareMatrix3(const Quaternion<Real>& q) { |
| 62 |
|
|
*this = q.toRotationMatrix3(); |
| 63 |
|
|
} |
| 64 |
|
|
|
| 65 |
|
|
SquareMatrix3(Real w, Real x, Real y, Real z) { |
| 66 |
|
|
Quaternion<Real> q(w, x, y, z); |
| 67 |
|
|
*this = q.toRotationMatrix3(); |
| 68 |
|
|
} |
| 69 |
|
|
|
| 70 |
tim |
70 |
/** copy assignment operator */ |
| 71 |
|
|
SquareMatrix3<Real>& operator =(const SquareMatrix<Real, 3>& m) { |
| 72 |
|
|
if (this == &m) |
| 73 |
|
|
return *this; |
| 74 |
|
|
SquareMatrix<Real, 3>::operator=(m); |
| 75 |
|
|
} |
| 76 |
tim |
76 |
|
| 77 |
|
|
/** |
| 78 |
|
|
* Sets this matrix to a rotation matrix by three euler angles |
| 79 |
|
|
* @ param euler |
| 80 |
|
|
*/ |
| 81 |
tim |
93 |
void setupRotMat(const Vector3<Real>& eulerAngles) { |
| 82 |
|
|
setupRotMat(eulerAngles[0], eulerAngles[1], eulerAngles[2]); |
| 83 |
|
|
} |
| 84 |
tim |
76 |
|
| 85 |
|
|
/** |
| 86 |
|
|
* Sets this matrix to a rotation matrix by three euler angles |
| 87 |
|
|
* @param phi |
| 88 |
|
|
* @param theta |
| 89 |
|
|
* @psi theta |
| 90 |
|
|
*/ |
| 91 |
tim |
93 |
void setupRotMat(Real phi, Real theta, Real psi) { |
| 92 |
|
|
Real sphi, stheta, spsi; |
| 93 |
|
|
Real cphi, ctheta, cpsi; |
| 94 |
tim |
76 |
|
| 95 |
tim |
93 |
sphi = sin(phi); |
| 96 |
|
|
stheta = sin(theta); |
| 97 |
|
|
spsi = sin(psi); |
| 98 |
|
|
cphi = cos(phi); |
| 99 |
|
|
ctheta = cos(theta); |
| 100 |
|
|
cpsi = cos(psi); |
| 101 |
tim |
76 |
|
| 102 |
tim |
93 |
data_[0][0] = cpsi * cphi - ctheta * sphi * spsi; |
| 103 |
|
|
data_[0][1] = cpsi * sphi + ctheta * cphi * spsi; |
| 104 |
|
|
data_[0][2] = spsi * stheta; |
| 105 |
|
|
|
| 106 |
|
|
data_[1][0] = -spsi * ctheta - ctheta * sphi * cpsi; |
| 107 |
|
|
data_[1][1] = -spsi * stheta + ctheta * cphi * cpsi; |
| 108 |
|
|
data_[1][2] = cpsi * stheta; |
| 109 |
|
|
|
| 110 |
|
|
data_[2][0] = stheta * sphi; |
| 111 |
|
|
data_[2][1] = -stheta * cphi; |
| 112 |
|
|
data_[2][2] = ctheta; |
| 113 |
|
|
} |
| 114 |
|
|
|
| 115 |
|
|
|
| 116 |
tim |
76 |
/** |
| 117 |
|
|
* Sets this matrix to a rotation matrix by quaternion |
| 118 |
|
|
* @param quat |
| 119 |
|
|
*/ |
| 120 |
tim |
93 |
void setupRotMat(const Quaternion<Real>& quat) { |
| 121 |
|
|
*this = quat.toRotationMatrix3(); |
| 122 |
|
|
} |
| 123 |
tim |
76 |
|
| 124 |
|
|
/** |
| 125 |
|
|
* Sets this matrix to a rotation matrix by quaternion |
| 126 |
tim |
93 |
* @param w the first element |
| 127 |
|
|
* @param x the second element |
| 128 |
|
|
* @param y the third element |
| 129 |
|
|
* @parma z the fourth element |
| 130 |
tim |
76 |
*/ |
| 131 |
tim |
93 |
void setupRotMat(Real w, Real x, Real y, Real z) { |
| 132 |
|
|
Quaternion<Real> q(w, x, y, z); |
| 133 |
|
|
*this = q.toRotationMatrix3(); |
| 134 |
|
|
} |
| 135 |
tim |
76 |
|
| 136 |
|
|
/** |
| 137 |
|
|
* Returns the quaternion from this rotation matrix |
| 138 |
|
|
* @return the quaternion from this rotation matrix |
| 139 |
|
|
* @exception invalid rotation matrix |
| 140 |
|
|
*/ |
| 141 |
tim |
93 |
Quaternion<Real> toQuaternion() { |
| 142 |
|
|
Quaternion<Real> q; |
| 143 |
|
|
Real t, s; |
| 144 |
|
|
Real ad1, ad2, ad3; |
| 145 |
|
|
t = data_[0][0] + data_[1][1] + data_[2][2] + 1.0; |
| 146 |
tim |
76 |
|
| 147 |
tim |
93 |
if( t > 0.0 ){ |
| 148 |
|
|
|
| 149 |
|
|
s = 0.5 / sqrt( t ); |
| 150 |
|
|
q[0] = 0.25 / s; |
| 151 |
|
|
q[1] = (data_[1][2] - data_[2][1]) * s; |
| 152 |
|
|
q[2] = (data_[2][0] - data_[0][2]) * s; |
| 153 |
|
|
q[3] = (data_[0][1] - data_[1][0]) * s; |
| 154 |
|
|
} else { |
| 155 |
|
|
|
| 156 |
|
|
ad1 = fabs( data_[0][0] ); |
| 157 |
|
|
ad2 = fabs( data_[1][1] ); |
| 158 |
|
|
ad3 = fabs( data_[2][2] ); |
| 159 |
|
|
|
| 160 |
|
|
if( ad1 >= ad2 && ad1 >= ad3 ){ |
| 161 |
|
|
|
| 162 |
|
|
s = 2.0 * sqrt( 1.0 + data_[0][0] - data_[1][1] - data_[2][2] ); |
| 163 |
|
|
q[0] = (data_[1][2] + data_[2][1]) / s; |
| 164 |
|
|
q[1] = 0.5 / s; |
| 165 |
|
|
q[2] = (data_[0][1] + data_[1][0]) / s; |
| 166 |
|
|
q[3] = (data_[0][2] + data_[2][0]) / s; |
| 167 |
|
|
} else if ( ad2 >= ad1 && ad2 >= ad3 ) { |
| 168 |
|
|
s = sqrt( 1.0 + data_[1][1] - data_[0][0] - data_[2][2] ) * 2.0; |
| 169 |
|
|
q[0] = (data_[0][2] + data_[2][0]) / s; |
| 170 |
|
|
q[1] = (data_[0][1] + data_[1][0]) / s; |
| 171 |
|
|
q[2] = 0.5 / s; |
| 172 |
|
|
q[3] = (data_[1][2] + data_[2][1]) / s; |
| 173 |
|
|
} else { |
| 174 |
|
|
|
| 175 |
|
|
s = sqrt( 1.0 + data_[2][2] - data_[0][0] - data_[1][1] ) * 2.0; |
| 176 |
|
|
q[0] = (data_[0][1] + data_[1][0]) / s; |
| 177 |
|
|
q[1] = (data_[0][2] + data_[2][0]) / s; |
| 178 |
|
|
q[2] = (data_[1][2] + data_[2][1]) / s; |
| 179 |
|
|
q[3] = 0.5 / s; |
| 180 |
|
|
} |
| 181 |
|
|
} |
| 182 |
|
|
|
| 183 |
|
|
return q; |
| 184 |
|
|
|
| 185 |
|
|
} |
| 186 |
|
|
|
| 187 |
tim |
76 |
/** |
| 188 |
|
|
* Returns the euler angles from this rotation matrix |
| 189 |
tim |
93 |
* @return the euler angles in a vector |
| 190 |
tim |
76 |
* @exception invalid rotation matrix |
| 191 |
tim |
93 |
* We use so-called "x-convention", which is the most common definition. |
| 192 |
|
|
* In this convention, the rotation given by Euler angles (phi, theta, psi), where the first |
| 193 |
|
|
* rotation is by an angle phi about the z-axis, the second is by an angle |
| 194 |
|
|
* theta (0 <= theta <= 180)about the x-axis, and thethird is by an angle psi about the |
| 195 |
|
|
* z-axis (again). |
| 196 |
tim |
76 |
*/ |
| 197 |
tim |
93 |
Vector3<Real> toEulerAngles() { |
| 198 |
|
|
Vector<Real> myEuler; |
| 199 |
|
|
Real phi,theta,psi,eps; |
| 200 |
|
|
Real ctheta,stheta; |
| 201 |
|
|
|
| 202 |
|
|
// set the tolerance for Euler angles and rotation elements |
| 203 |
|
|
|
| 204 |
|
|
theta = acos(min(1.0,max(-1.0,data_[2][2]))); |
| 205 |
|
|
ctheta = data_[2][2]; |
| 206 |
|
|
stheta = sqrt(1.0 - ctheta * ctheta); |
| 207 |
|
|
|
| 208 |
|
|
// when sin(theta) is close to 0, we need to consider singularity |
| 209 |
|
|
// In this case, we can assign an arbitary value to phi (or psi), and then determine |
| 210 |
|
|
// the psi (or phi) or vice-versa. We'll assume that phi always gets the rotation, and psi is 0 |
| 211 |
|
|
// in cases of singularity. |
| 212 |
|
|
// we use atan2 instead of atan, since atan2 will give us -Pi to Pi. |
| 213 |
|
|
// Since 0 <= theta <= 180, sin(theta) will be always non-negative. Therefore, it never |
| 214 |
|
|
// change the sign of both of the parameters passed to atan2. |
| 215 |
|
|
|
| 216 |
|
|
if (fabs(stheta) <= oopse::epsilon){ |
| 217 |
|
|
psi = 0.0; |
| 218 |
|
|
phi = atan2(-data_[1][0], data_[0][0]); |
| 219 |
|
|
} |
| 220 |
|
|
// we only have one unique solution |
| 221 |
|
|
else{ |
| 222 |
|
|
phi = atan2(data_[2][0], -data_[2][1]); |
| 223 |
|
|
psi = atan2(data_[0][2], data_[1][2]); |
| 224 |
|
|
} |
| 225 |
|
|
|
| 226 |
|
|
//wrap phi and psi, make sure they are in the range from 0 to 2*Pi |
| 227 |
|
|
if (phi < 0) |
| 228 |
|
|
phi += M_PI; |
| 229 |
|
|
|
| 230 |
|
|
if (psi < 0) |
| 231 |
|
|
psi += M_PI; |
| 232 |
|
|
|
| 233 |
|
|
myEuler[0] = phi; |
| 234 |
|
|
myEuler[1] = theta; |
| 235 |
|
|
myEuler[2] = psi; |
| 236 |
|
|
|
| 237 |
|
|
return myEuler; |
| 238 |
|
|
} |
| 239 |
tim |
70 |
|
| 240 |
|
|
/** |
| 241 |
|
|
* Sets the value of this matrix to the inversion of itself. |
| 242 |
|
|
* @note since simple algorithm can be applied to inverse the 3 by 3 matrix, we hide the |
| 243 |
|
|
* implementation of inverse in SquareMatrix class |
| 244 |
|
|
*/ |
| 245 |
|
|
void inverse(); |
| 246 |
|
|
|
| 247 |
tim |
76 |
void diagonalize(); |
| 248 |
|
|
|
| 249 |
tim |
70 |
}; |
| 250 |
|
|
|
| 251 |
tim |
93 |
typedef template SquareMatrix3<double> Mat3x3d |
| 252 |
|
|
typedef template SquareMatrix3<double> RotMat3x3d; |
| 253 |
|
|
|
| 254 |
|
|
} //namespace oopse |
| 255 |
|
|
#endif // MATH_SQUAREMATRIX_HPP |