# | Line 1 | Line 1 | |
---|---|---|
1 | < | /* |
1 | > | /* |
2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | |
3 | * | |
4 | * The University of Notre Dame grants you ("Licensee") a | |
# | Line 45 | Line 45 | |
45 | * @date 10/11/2004 | |
46 | * @version 1.0 | |
47 | */ | |
48 | < | #ifndef MATH_SQUAREMATRIX3_HPP |
48 | > | #ifndef MATH_SQUAREMATRIX3_HPP |
49 | #define MATH_SQUAREMATRIX3_HPP | |
50 | < | |
50 | > | #include <vector> |
51 | #include "Quaternion.hpp" | |
52 | #include "SquareMatrix.hpp" | |
53 | #include "Vector3.hpp" | |
54 | < | |
54 | > | #include "utils/NumericConstant.hpp" |
55 | namespace oopse { | |
56 | ||
57 | < | template<typename Real> |
58 | < | class SquareMatrix3 : public SquareMatrix<Real, 3> { |
59 | < | public: |
57 | > | template<typename Real> |
58 | > | class SquareMatrix3 : public SquareMatrix<Real, 3> { |
59 | > | public: |
60 | ||
61 | < | typedef Real ElemType; |
62 | < | typedef Real* ElemPoinerType; |
61 | > | typedef Real ElemType; |
62 | > | typedef Real* ElemPoinerType; |
63 | ||
64 | < | /** default constructor */ |
65 | < | SquareMatrix3() : SquareMatrix<Real, 3>() { |
66 | < | } |
64 | > | /** default constructor */ |
65 | > | SquareMatrix3() : SquareMatrix<Real, 3>() { |
66 | > | } |
67 | ||
68 | < | /** Constructs and initializes every element of this matrix to a scalar */ |
69 | < | SquareMatrix3(Real s) : SquareMatrix<Real,3>(s){ |
70 | < | } |
68 | > | /** Constructs and initializes every element of this matrix to a scalar */ |
69 | > | SquareMatrix3(Real s) : SquareMatrix<Real,3>(s){ |
70 | > | } |
71 | ||
72 | < | /** Constructs and initializes from an array */ |
73 | < | SquareMatrix3(Real* array) : SquareMatrix<Real,3>(array){ |
74 | < | } |
72 | > | /** Constructs and initializes from an array */ |
73 | > | SquareMatrix3(Real* array) : SquareMatrix<Real,3>(array){ |
74 | > | } |
75 | ||
76 | ||
77 | < | /** copy constructor */ |
78 | < | SquareMatrix3(const SquareMatrix<Real, 3>& m) : SquareMatrix<Real, 3>(m) { |
79 | < | } |
77 | > | /** copy constructor */ |
78 | > | SquareMatrix3(const SquareMatrix<Real, 3>& m) : SquareMatrix<Real, 3>(m) { |
79 | > | } |
80 | ||
81 | < | SquareMatrix3( const Vector3<Real>& eulerAngles) { |
82 | < | setupRotMat(eulerAngles); |
83 | < | } |
81 | > | SquareMatrix3( const Vector3<Real>& eulerAngles) { |
82 | > | setupRotMat(eulerAngles); |
83 | > | } |
84 | ||
85 | < | SquareMatrix3(Real phi, Real theta, Real psi) { |
86 | < | setupRotMat(phi, theta, psi); |
87 | < | } |
85 | > | SquareMatrix3(Real phi, Real theta, Real psi) { |
86 | > | setupRotMat(phi, theta, psi); |
87 | > | } |
88 | ||
89 | < | SquareMatrix3(const Quaternion<Real>& q) { |
90 | < | setupRotMat(q); |
89 | > | SquareMatrix3(const Quaternion<Real>& q) { |
90 | > | setupRotMat(q); |
91 | ||
92 | < | } |
92 | > | } |
93 | ||
94 | < | SquareMatrix3(Real w, Real x, Real y, Real z) { |
95 | < | setupRotMat(w, x, y, z); |
96 | < | } |
94 | > | SquareMatrix3(Real w, Real x, Real y, Real z) { |
95 | > | setupRotMat(w, x, y, z); |
96 | > | } |
97 | ||
98 | < | /** copy assignment operator */ |
99 | < | SquareMatrix3<Real>& operator =(const SquareMatrix<Real, 3>& m) { |
100 | < | if (this == &m) |
101 | < | return *this; |
102 | < | SquareMatrix<Real, 3>::operator=(m); |
103 | < | return *this; |
104 | < | } |
98 | > | /** copy assignment operator */ |
99 | > | SquareMatrix3<Real>& operator =(const SquareMatrix<Real, 3>& m) { |
100 | > | if (this == &m) |
101 | > | return *this; |
102 | > | SquareMatrix<Real, 3>::operator=(m); |
103 | > | return *this; |
104 | > | } |
105 | ||
106 | ||
107 | < | SquareMatrix3<Real>& operator =(const Quaternion<Real>& q) { |
108 | < | this->setupRotMat(q); |
109 | < | return *this; |
110 | < | } |
107 | > | SquareMatrix3<Real>& operator =(const Quaternion<Real>& q) { |
108 | > | this->setupRotMat(q); |
109 | > | return *this; |
110 | > | } |
111 | ||
112 | < | /** |
113 | < | * Sets this matrix to a rotation matrix by three euler angles |
114 | < | * @ param euler |
115 | < | */ |
116 | < | void setupRotMat(const Vector3<Real>& eulerAngles) { |
117 | < | setupRotMat(eulerAngles[0], eulerAngles[1], eulerAngles[2]); |
118 | < | } |
112 | > | /** |
113 | > | * Sets this matrix to a rotation matrix by three euler angles |
114 | > | * @ param euler |
115 | > | */ |
116 | > | void setupRotMat(const Vector3<Real>& eulerAngles) { |
117 | > | setupRotMat(eulerAngles[0], eulerAngles[1], eulerAngles[2]); |
118 | > | } |
119 | ||
120 | < | /** |
121 | < | * Sets this matrix to a rotation matrix by three euler angles |
122 | < | * @param phi |
123 | < | * @param theta |
124 | < | * @psi theta |
125 | < | */ |
126 | < | void setupRotMat(Real phi, Real theta, Real psi) { |
127 | < | Real sphi, stheta, spsi; |
128 | < | Real cphi, ctheta, cpsi; |
120 | > | /** |
121 | > | * Sets this matrix to a rotation matrix by three euler angles |
122 | > | * @param phi |
123 | > | * @param theta |
124 | > | * @psi theta |
125 | > | */ |
126 | > | void setupRotMat(Real phi, Real theta, Real psi) { |
127 | > | Real sphi, stheta, spsi; |
128 | > | Real cphi, ctheta, cpsi; |
129 | ||
130 | < | sphi = sin(phi); |
131 | < | stheta = sin(theta); |
132 | < | spsi = sin(psi); |
133 | < | cphi = cos(phi); |
134 | < | ctheta = cos(theta); |
135 | < | cpsi = cos(psi); |
130 | > | sphi = sin(phi); |
131 | > | stheta = sin(theta); |
132 | > | spsi = sin(psi); |
133 | > | cphi = cos(phi); |
134 | > | ctheta = cos(theta); |
135 | > | cpsi = cos(psi); |
136 | ||
137 | < | this->data_[0][0] = cpsi * cphi - ctheta * sphi * spsi; |
138 | < | this->data_[0][1] = cpsi * sphi + ctheta * cphi * spsi; |
139 | < | this->data_[0][2] = spsi * stheta; |
137 | > | this->data_[0][0] = cpsi * cphi - ctheta * sphi * spsi; |
138 | > | this->data_[0][1] = cpsi * sphi + ctheta * cphi * spsi; |
139 | > | this->data_[0][2] = spsi * stheta; |
140 | ||
141 | < | this->data_[1][0] = -spsi * ctheta - ctheta * sphi * cpsi; |
142 | < | this->data_[1][1] = -spsi * stheta + ctheta * cphi * cpsi; |
143 | < | this->data_[1][2] = cpsi * stheta; |
141 | > | this->data_[1][0] = -spsi * ctheta - ctheta * sphi * cpsi; |
142 | > | this->data_[1][1] = -spsi * stheta + ctheta * cphi * cpsi; |
143 | > | this->data_[1][2] = cpsi * stheta; |
144 | ||
145 | < | this->data_[2][0] = stheta * sphi; |
146 | < | this->data_[2][1] = -stheta * cphi; |
147 | < | this->data_[2][2] = ctheta; |
148 | < | } |
145 | > | this->data_[2][0] = stheta * sphi; |
146 | > | this->data_[2][1] = -stheta * cphi; |
147 | > | this->data_[2][2] = ctheta; |
148 | > | } |
149 | ||
150 | ||
151 | < | /** |
152 | < | * Sets this matrix to a rotation matrix by quaternion |
153 | < | * @param quat |
154 | < | */ |
155 | < | void setupRotMat(const Quaternion<Real>& quat) { |
156 | < | setupRotMat(quat.w(), quat.x(), quat.y(), quat.z()); |
157 | < | } |
151 | > | /** |
152 | > | * Sets this matrix to a rotation matrix by quaternion |
153 | > | * @param quat |
154 | > | */ |
155 | > | void setupRotMat(const Quaternion<Real>& quat) { |
156 | > | setupRotMat(quat.w(), quat.x(), quat.y(), quat.z()); |
157 | > | } |
158 | ||
159 | < | /** |
160 | < | * Sets this matrix to a rotation matrix by quaternion |
161 | < | * @param w the first element |
162 | < | * @param x the second element |
163 | < | * @param y the third element |
164 | < | * @param z the fourth element |
165 | < | */ |
166 | < | void setupRotMat(Real w, Real x, Real y, Real z) { |
167 | < | Quaternion<Real> q(w, x, y, z); |
168 | < | *this = q.toRotationMatrix3(); |
169 | < | } |
159 | > | /** |
160 | > | * Sets this matrix to a rotation matrix by quaternion |
161 | > | * @param w the first element |
162 | > | * @param x the second element |
163 | > | * @param y the third element |
164 | > | * @param z the fourth element |
165 | > | */ |
166 | > | void setupRotMat(Real w, Real x, Real y, Real z) { |
167 | > | Quaternion<Real> q(w, x, y, z); |
168 | > | *this = q.toRotationMatrix3(); |
169 | > | } |
170 | ||
171 | < | /** |
172 | < | * Returns the quaternion from this rotation matrix |
173 | < | * @return the quaternion from this rotation matrix |
174 | < | * @exception invalid rotation matrix |
175 | < | */ |
176 | < | Quaternion<Real> toQuaternion() { |
177 | < | Quaternion<Real> q; |
178 | < | Real t, s; |
179 | < | Real ad1, ad2, ad3; |
180 | < | t = this->data_[0][0] + this->data_[1][1] + this->data_[2][2] + 1.0; |
171 | > | void setupSkewMat(Vector3<Real> v) { |
172 | > | setupSkewMat(v[0], v[1], v[2]); |
173 | > | } |
174 | ||
175 | < | if( t > 0.0 ){ |
175 | > | void setupSkewMat(Real v1, Real v2, Real v3) { |
176 | > | this->data_[0][0] = 0; |
177 | > | this->data_[0][1] = -v3; |
178 | > | this->data_[0][2] = v2; |
179 | > | this->data_[1][0] = v3; |
180 | > | this->data_[1][1] = 0; |
181 | > | this->data_[1][2] = -v1; |
182 | > | this->data_[2][0] = -v2; |
183 | > | this->data_[2][1] = v1; |
184 | > | this->data_[2][2] = 0; |
185 | > | |
186 | > | |
187 | > | } |
188 | ||
184 | – | s = 0.5 / sqrt( t ); |
185 | – | q[0] = 0.25 / s; |
186 | – | q[1] = (this->data_[1][2] - this->data_[2][1]) * s; |
187 | – | q[2] = (this->data_[2][0] - this->data_[0][2]) * s; |
188 | – | q[3] = (this->data_[0][1] - this->data_[1][0]) * s; |
189 | – | } else { |
189 | ||
191 | – | ad1 = fabs( this->data_[0][0] ); |
192 | – | ad2 = fabs( this->data_[1][1] ); |
193 | – | ad3 = fabs( this->data_[2][2] ); |
190 | ||
191 | < | if( ad1 >= ad2 && ad1 >= ad3 ){ |
191 | > | /** |
192 | > | * Returns the quaternion from this rotation matrix |
193 | > | * @return the quaternion from this rotation matrix |
194 | > | * @exception invalid rotation matrix |
195 | > | */ |
196 | > | Quaternion<Real> toQuaternion() { |
197 | > | Quaternion<Real> q; |
198 | > | Real t, s; |
199 | > | Real ad1, ad2, ad3; |
200 | > | t = this->data_[0][0] + this->data_[1][1] + this->data_[2][2] + 1.0; |
201 | ||
202 | < | s = 2.0 * sqrt( 1.0 + this->data_[0][0] - this->data_[1][1] - this->data_[2][2] ); |
198 | < | q[0] = (this->data_[1][2] + this->data_[2][1]) / s; |
199 | < | q[1] = 0.5 / s; |
200 | < | q[2] = (this->data_[0][1] + this->data_[1][0]) / s; |
201 | < | q[3] = (this->data_[0][2] + this->data_[2][0]) / s; |
202 | < | } else if ( ad2 >= ad1 && ad2 >= ad3 ) { |
203 | < | s = sqrt( 1.0 + this->data_[1][1] - this->data_[0][0] - this->data_[2][2] ) * 2.0; |
204 | < | q[0] = (this->data_[0][2] + this->data_[2][0]) / s; |
205 | < | q[1] = (this->data_[0][1] + this->data_[1][0]) / s; |
206 | < | q[2] = 0.5 / s; |
207 | < | q[3] = (this->data_[1][2] + this->data_[2][1]) / s; |
208 | < | } else { |
202 | > | if( t > NumericConstant::epsilon ){ |
203 | ||
204 | < | s = sqrt( 1.0 + this->data_[2][2] - this->data_[0][0] - this->data_[1][1] ) * 2.0; |
205 | < | q[0] = (this->data_[0][1] + this->data_[1][0]) / s; |
206 | < | q[1] = (this->data_[0][2] + this->data_[2][0]) / s; |
207 | < | q[2] = (this->data_[1][2] + this->data_[2][1]) / s; |
208 | < | q[3] = 0.5 / s; |
209 | < | } |
216 | < | } |
204 | > | s = 0.5 / sqrt( t ); |
205 | > | q[0] = 0.25 / s; |
206 | > | q[1] = (this->data_[1][2] - this->data_[2][1]) * s; |
207 | > | q[2] = (this->data_[2][0] - this->data_[0][2]) * s; |
208 | > | q[3] = (this->data_[0][1] - this->data_[1][0]) * s; |
209 | > | } else { |
210 | ||
211 | < | return q; |
211 | > | ad1 = this->data_[0][0]; |
212 | > | ad2 = this->data_[1][1]; |
213 | > | ad3 = this->data_[2][2]; |
214 | > | |
215 | > | if( ad1 >= ad2 && ad1 >= ad3 ){ |
216 | > | |
217 | > | s = 0.5 / sqrt( 1.0 + this->data_[0][0] - this->data_[1][1] - this->data_[2][2] ); |
218 | > | q[0] = (this->data_[1][2] - this->data_[2][1]) * s; |
219 | > | q[1] = 0.25 / s; |
220 | > | q[2] = (this->data_[0][1] + this->data_[1][0]) * s; |
221 | > | q[3] = (this->data_[0][2] + this->data_[2][0]) * s; |
222 | > | } else if ( ad2 >= ad1 && ad2 >= ad3 ) { |
223 | > | s = 0.5 / sqrt( 1.0 + this->data_[1][1] - this->data_[0][0] - this->data_[2][2] ); |
224 | > | q[0] = (this->data_[2][0] - this->data_[0][2] ) * s; |
225 | > | q[1] = (this->data_[0][1] + this->data_[1][0]) * s; |
226 | > | q[2] = 0.25 / s; |
227 | > | q[3] = (this->data_[1][2] + this->data_[2][1]) * s; |
228 | > | } else { |
229 | > | |
230 | > | s = 0.5 / sqrt( 1.0 + this->data_[2][2] - this->data_[0][0] - this->data_[1][1] ); |
231 | > | q[0] = (this->data_[0][1] - this->data_[1][0]) * s; |
232 | > | q[1] = (this->data_[0][2] + this->data_[2][0]) * s; |
233 | > | q[2] = (this->data_[1][2] + this->data_[2][1]) * s; |
234 | > | q[3] = 0.25 / s; |
235 | > | } |
236 | > | } |
237 | > | |
238 | > | return q; |
239 | ||
240 | < | } |
240 | > | } |
241 | ||
242 | < | /** |
243 | < | * Returns the euler angles from this rotation matrix |
244 | < | * @return the euler angles in a vector |
245 | < | * @exception invalid rotation matrix |
246 | < | * We use so-called "x-convention", which is the most common definition. |
247 | < | * In this convention, the rotation given by Euler angles (phi, theta, psi), where the first |
248 | < | * rotation is by an angle phi about the z-axis, the second is by an angle |
249 | < | * theta (0 <= theta <= 180)about the x-axis, and thethird is by an angle psi about the |
250 | < | * z-axis (again). |
251 | < | */ |
252 | < | Vector3<Real> toEulerAngles() { |
253 | < | Vector3<Real> myEuler; |
254 | < | Real phi; |
255 | < | Real theta; |
256 | < | Real psi; |
257 | < | Real ctheta; |
258 | < | Real stheta; |
242 | > | /** |
243 | > | * Returns the euler angles from this rotation matrix |
244 | > | * @return the euler angles in a vector |
245 | > | * @exception invalid rotation matrix |
246 | > | * We use so-called "x-convention", which is the most common definition. |
247 | > | * In this convention, the rotation given by Euler angles (phi, theta, psi), where the first |
248 | > | * rotation is by an angle phi about the z-axis, the second is by an angle |
249 | > | * theta (0 <= theta <= 180)about the x-axis, and thethird is by an angle psi about the |
250 | > | * z-axis (again). |
251 | > | */ |
252 | > | Vector3<Real> toEulerAngles() { |
253 | > | Vector3<Real> myEuler; |
254 | > | Real phi; |
255 | > | Real theta; |
256 | > | Real psi; |
257 | > | Real ctheta; |
258 | > | Real stheta; |
259 | ||
260 | < | // set the tolerance for Euler angles and rotation elements |
260 | > | // set the tolerance for Euler angles and rotation elements |
261 | ||
262 | < | theta = acos(std::min(1.0, std::max(-1.0,this->data_[2][2]))); |
263 | < | ctheta = this->data_[2][2]; |
264 | < | stheta = sqrt(1.0 - ctheta * ctheta); |
262 | > | theta = acos(std::min((RealType)1.0, std::max((RealType)-1.0,this->data_[2][2]))); |
263 | > | ctheta = this->data_[2][2]; |
264 | > | stheta = sqrt(1.0 - ctheta * ctheta); |
265 | ||
266 | < | // when sin(theta) is close to 0, we need to consider singularity |
267 | < | // In this case, we can assign an arbitary value to phi (or psi), and then determine |
268 | < | // the psi (or phi) or vice-versa. We'll assume that phi always gets the rotation, and psi is 0 |
269 | < | // in cases of singularity. |
270 | < | // we use atan2 instead of atan, since atan2 will give us -Pi to Pi. |
271 | < | // Since 0 <= theta <= 180, sin(theta) will be always non-negative. Therefore, it never |
272 | < | // change the sign of both of the parameters passed to atan2. |
266 | > | // when sin(theta) is close to 0, we need to consider singularity |
267 | > | // In this case, we can assign an arbitary value to phi (or psi), and then determine |
268 | > | // the psi (or phi) or vice-versa. We'll assume that phi always gets the rotation, and psi is 0 |
269 | > | // in cases of singularity. |
270 | > | // we use atan2 instead of atan, since atan2 will give us -Pi to Pi. |
271 | > | // Since 0 <= theta <= 180, sin(theta) will be always non-negative. Therefore, it never |
272 | > | // change the sign of both of the parameters passed to atan2. |
273 | ||
274 | < | if (fabs(stheta) <= oopse::epsilon){ |
275 | < | psi = 0.0; |
276 | < | phi = atan2(-this->data_[1][0], this->data_[0][0]); |
277 | < | } |
278 | < | // we only have one unique solution |
279 | < | else{ |
280 | < | phi = atan2(this->data_[2][0], -this->data_[2][1]); |
281 | < | psi = atan2(this->data_[0][2], this->data_[1][2]); |
282 | < | } |
274 | > | if (fabs(stheta) <= oopse::epsilon){ |
275 | > | psi = 0.0; |
276 | > | phi = atan2(-this->data_[1][0], this->data_[0][0]); |
277 | > | } |
278 | > | // we only have one unique solution |
279 | > | else{ |
280 | > | phi = atan2(this->data_[2][0], -this->data_[2][1]); |
281 | > | psi = atan2(this->data_[0][2], this->data_[1][2]); |
282 | > | } |
283 | ||
284 | < | //wrap phi and psi, make sure they are in the range from 0 to 2*Pi |
285 | < | if (phi < 0) |
286 | < | phi += M_PI; |
284 | > | //wrap phi and psi, make sure they are in the range from 0 to 2*Pi |
285 | > | if (phi < 0) |
286 | > | phi += M_PI; |
287 | ||
288 | < | if (psi < 0) |
289 | < | psi += M_PI; |
288 | > | if (psi < 0) |
289 | > | psi += M_PI; |
290 | ||
291 | < | myEuler[0] = phi; |
292 | < | myEuler[1] = theta; |
293 | < | myEuler[2] = psi; |
291 | > | myEuler[0] = phi; |
292 | > | myEuler[1] = theta; |
293 | > | myEuler[2] = psi; |
294 | ||
295 | < | return myEuler; |
296 | < | } |
295 | > | return myEuler; |
296 | > | } |
297 | ||
298 | < | /** Returns the determinant of this matrix. */ |
299 | < | Real determinant() const { |
300 | < | Real x,y,z; |
298 | > | /** Returns the determinant of this matrix. */ |
299 | > | Real determinant() const { |
300 | > | Real x,y,z; |
301 | ||
302 | < | x = this->data_[0][0] * (this->data_[1][1] * this->data_[2][2] - this->data_[1][2] * this->data_[2][1]); |
303 | < | y = this->data_[0][1] * (this->data_[1][2] * this->data_[2][0] - this->data_[1][0] * this->data_[2][2]); |
304 | < | z = this->data_[0][2] * (this->data_[1][0] * this->data_[2][1] - this->data_[1][1] * this->data_[2][0]); |
302 | > | x = this->data_[0][0] * (this->data_[1][1] * this->data_[2][2] - this->data_[1][2] * this->data_[2][1]); |
303 | > | y = this->data_[0][1] * (this->data_[1][2] * this->data_[2][0] - this->data_[1][0] * this->data_[2][2]); |
304 | > | z = this->data_[0][2] * (this->data_[1][0] * this->data_[2][1] - this->data_[1][1] * this->data_[2][0]); |
305 | ||
306 | < | return(x + y + z); |
307 | < | } |
306 | > | return(x + y + z); |
307 | > | } |
308 | ||
309 | < | /** Returns the trace of this matrix. */ |
310 | < | Real trace() const { |
311 | < | return this->data_[0][0] + this->data_[1][1] + this->data_[2][2]; |
312 | < | } |
309 | > | /** Returns the trace of this matrix. */ |
310 | > | Real trace() const { |
311 | > | return this->data_[0][0] + this->data_[1][1] + this->data_[2][2]; |
312 | > | } |
313 | ||
314 | < | /** |
315 | < | * Sets the value of this matrix to the inversion of itself. |
316 | < | * @note since simple algorithm can be applied to inverse the 3 by 3 matrix, we hide the |
317 | < | * implementation of inverse in SquareMatrix class |
318 | < | */ |
319 | < | SquareMatrix3<Real> inverse() const { |
320 | < | SquareMatrix3<Real> m; |
321 | < | double det = determinant(); |
322 | < | if (fabs(det) <= oopse::epsilon) { |
323 | < | //"The method was called on a matrix with |determinant| <= 1e-6.", |
324 | < | //"This is a runtime or a programming error in your application."); |
325 | < | } |
314 | > | /** |
315 | > | * Sets the value of this matrix to the inversion of itself. |
316 | > | * @note since simple algorithm can be applied to inverse the 3 by 3 matrix, we hide the |
317 | > | * implementation of inverse in SquareMatrix class |
318 | > | */ |
319 | > | SquareMatrix3<Real> inverse() const { |
320 | > | SquareMatrix3<Real> m; |
321 | > | RealType det = determinant(); |
322 | > | if (fabs(det) <= oopse::epsilon) { |
323 | > | //"The method was called on a matrix with |determinant| <= 1e-6.", |
324 | > | //"This is a runtime or a programming error in your application."); |
325 | > | std::vector<int> zeroDiagElementIndex; |
326 | > | for (int i =0; i < 3; ++i) { |
327 | > | if (fabs(this->data_[i][i]) <= oopse::epsilon) { |
328 | > | zeroDiagElementIndex.push_back(i); |
329 | > | } |
330 | > | } |
331 | ||
332 | < | m(0, 0) = this->data_[1][1]*this->data_[2][2] - this->data_[1][2]*this->data_[2][1]; |
333 | < | m(1, 0) = this->data_[1][2]*this->data_[2][0] - this->data_[1][0]*this->data_[2][2]; |
334 | < | m(2, 0) = this->data_[1][0]*this->data_[2][1] - this->data_[1][1]*this->data_[2][0]; |
335 | < | m(0, 1) = this->data_[2][1]*this->data_[0][2] - this->data_[2][2]*this->data_[0][1]; |
311 | < | m(1, 1) = this->data_[2][2]*this->data_[0][0] - this->data_[2][0]*this->data_[0][2]; |
312 | < | m(2, 1) = this->data_[2][0]*this->data_[0][1] - this->data_[2][1]*this->data_[0][0]; |
313 | < | m(0, 2) = this->data_[0][1]*this->data_[1][2] - this->data_[0][2]*this->data_[1][1]; |
314 | < | m(1, 2) = this->data_[0][2]*this->data_[1][0] - this->data_[0][0]*this->data_[1][2]; |
315 | < | m(2, 2) = this->data_[0][0]*this->data_[1][1] - this->data_[0][1]*this->data_[1][0]; |
332 | > | if (zeroDiagElementIndex.size() == 2) { |
333 | > | int index = zeroDiagElementIndex[0]; |
334 | > | m(index, index) = 1.0 / this->data_[index][index]; |
335 | > | }else if (zeroDiagElementIndex.size() == 1) { |
336 | ||
337 | < | m /= det; |
338 | < | return m; |
337 | > | int a = (zeroDiagElementIndex[0] + 1) % 3; |
338 | > | int b = (zeroDiagElementIndex[0] + 2) %3; |
339 | > | RealType denom = this->data_[a][a] * this->data_[b][b] - this->data_[b][a]*this->data_[a][b]; |
340 | > | m(a, a) = this->data_[b][b] /denom; |
341 | > | m(b, a) = -this->data_[b][a]/denom; |
342 | > | |
343 | > | m(a,b) = -this->data_[a][b]/denom; |
344 | > | m(b, b) = this->data_[a][a]/denom; |
345 | > | |
346 | > | } |
347 | > | |
348 | > | /* |
349 | > | for(std::vector<int>::iterator iter = zeroDiagElementIndex.begin(); iter != zeroDiagElementIndex.end() ++iter) { |
350 | > | if (this->data_[*iter][0] > oopse::epsilon || this->data_[*iter][1] ||this->data_[*iter][2] || |
351 | > | this->data_[0][*iter] > oopse::epsilon || this->data_[1][*iter] ||this->data_[2][*iter] ) { |
352 | > | std::cout << "can not inverse matrix" << std::endl; |
353 | } | |
354 | < | /** |
355 | < | * Extract the eigenvalues and eigenvectors from a 3x3 matrix. |
356 | < | * The eigenvectors (the columns of V) will be normalized. |
323 | < | * The eigenvectors are aligned optimally with the x, y, and z |
324 | < | * axes respectively. |
325 | < | * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is |
326 | < | * overwritten |
327 | < | * @param w will contain the eigenvalues of the matrix On return of this function |
328 | < | * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are |
329 | < | * normalized and mutually orthogonal. |
330 | < | * @warning a will be overwritten |
331 | < | */ |
332 | < | static void diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w, SquareMatrix3<Real>& v); |
333 | < | }; |
334 | < | /*========================================================================= |
354 | > | } |
355 | > | */ |
356 | > | } else { |
357 | ||
358 | + | m(0, 0) = this->data_[1][1]*this->data_[2][2] - this->data_[1][2]*this->data_[2][1]; |
359 | + | m(1, 0) = this->data_[1][2]*this->data_[2][0] - this->data_[1][0]*this->data_[2][2]; |
360 | + | m(2, 0) = this->data_[1][0]*this->data_[2][1] - this->data_[1][1]*this->data_[2][0]; |
361 | + | m(0, 1) = this->data_[2][1]*this->data_[0][2] - this->data_[2][2]*this->data_[0][1]; |
362 | + | m(1, 1) = this->data_[2][2]*this->data_[0][0] - this->data_[2][0]*this->data_[0][2]; |
363 | + | m(2, 1) = this->data_[2][0]*this->data_[0][1] - this->data_[2][1]*this->data_[0][0]; |
364 | + | m(0, 2) = this->data_[0][1]*this->data_[1][2] - this->data_[0][2]*this->data_[1][1]; |
365 | + | m(1, 2) = this->data_[0][2]*this->data_[1][0] - this->data_[0][0]*this->data_[1][2]; |
366 | + | m(2, 2) = this->data_[0][0]*this->data_[1][1] - this->data_[0][1]*this->data_[1][0]; |
367 | + | |
368 | + | m /= det; |
369 | + | } |
370 | + | return m; |
371 | + | } |
372 | + | |
373 | + | SquareMatrix3<Real> transpose() const{ |
374 | + | SquareMatrix3<Real> result; |
375 | + | |
376 | + | for (unsigned int i = 0; i < 3; i++) |
377 | + | for (unsigned int j = 0; j < 3; j++) |
378 | + | result(j, i) = this->data_[i][j]; |
379 | + | |
380 | + | return result; |
381 | + | } |
382 | + | /** |
383 | + | * Extract the eigenvalues and eigenvectors from a 3x3 matrix. |
384 | + | * The eigenvectors (the columns of V) will be normalized. |
385 | + | * The eigenvectors are aligned optimally with the x, y, and z |
386 | + | * axes respectively. |
387 | + | * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is |
388 | + | * overwritten |
389 | + | * @param w will contain the eigenvalues of the matrix On return of this function |
390 | + | * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are |
391 | + | * normalized and mutually orthogonal. |
392 | + | * @warning a will be overwritten |
393 | + | */ |
394 | + | static void diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w, SquareMatrix3<Real>& v); |
395 | + | }; |
396 | + | /*========================================================================= |
397 | + | |
398 | Program: Visualization Toolkit | |
399 | Module: $RCSfile: SquareMatrix3.hpp,v $ | |
400 | ||
# | Line 340 | Line 402 | namespace oopse { | |
402 | All rights reserved. | |
403 | See Copyright.txt or http://www.kitware.com/Copyright.htm for details. | |
404 | ||
405 | < | This software is distributed WITHOUT ANY WARRANTY; without even |
406 | < | the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR |
407 | < | PURPOSE. See the above copyright notice for more information. |
405 | > | This software is distributed WITHOUT ANY WARRANTY; without even |
406 | > | the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR |
407 | > | PURPOSE. See the above copyright notice for more information. |
408 | ||
409 | < | =========================================================================*/ |
410 | < | template<typename Real> |
411 | < | void SquareMatrix3<Real>::diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w, |
412 | < | SquareMatrix3<Real>& v) { |
413 | < | int i,j,k,maxI; |
414 | < | Real tmp, maxVal; |
415 | < | Vector3<Real> v_maxI, v_k, v_j; |
409 | > | =========================================================================*/ |
410 | > | template<typename Real> |
411 | > | void SquareMatrix3<Real>::diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w, |
412 | > | SquareMatrix3<Real>& v) { |
413 | > | int i,j,k,maxI; |
414 | > | Real tmp, maxVal; |
415 | > | Vector3<Real> v_maxI, v_k, v_j; |
416 | ||
417 | < | // diagonalize using Jacobi |
418 | < | jacobi(a, w, v); |
419 | < | // if all the eigenvalues are the same, return identity matrix |
420 | < | if (w[0] == w[1] && w[0] == w[2] ) { |
421 | < | v = SquareMatrix3<Real>::identity(); |
422 | < | return; |
423 | < | } |
417 | > | // diagonalize using Jacobi |
418 | > | jacobi(a, w, v); |
419 | > | // if all the eigenvalues are the same, return identity matrix |
420 | > | if (w[0] == w[1] && w[0] == w[2] ) { |
421 | > | v = SquareMatrix3<Real>::identity(); |
422 | > | return; |
423 | > | } |
424 | ||
425 | < | // transpose temporarily, it makes it easier to sort the eigenvectors |
426 | < | v = v.transpose(); |
425 | > | // transpose temporarily, it makes it easier to sort the eigenvectors |
426 | > | v = v.transpose(); |
427 | ||
428 | < | // if two eigenvalues are the same, re-orthogonalize to optimally line |
429 | < | // up the eigenvectors with the x, y, and z axes |
430 | < | for (i = 0; i < 3; i++) { |
431 | < | if (w((i+1)%3) == w((i+2)%3)) {// two eigenvalues are the same |
432 | < | // find maximum element of the independant eigenvector |
433 | < | maxVal = fabs(v(i, 0)); |
434 | < | maxI = 0; |
435 | < | for (j = 1; j < 3; j++) { |
436 | < | if (maxVal < (tmp = fabs(v(i, j)))){ |
437 | < | maxVal = tmp; |
438 | < | maxI = j; |
439 | < | } |
440 | < | } |
428 | > | // if two eigenvalues are the same, re-orthogonalize to optimally line |
429 | > | // up the eigenvectors with the x, y, and z axes |
430 | > | for (i = 0; i < 3; i++) { |
431 | > | if (w((i+1)%3) == w((i+2)%3)) {// two eigenvalues are the same |
432 | > | // find maximum element of the independant eigenvector |
433 | > | maxVal = fabs(v(i, 0)); |
434 | > | maxI = 0; |
435 | > | for (j = 1; j < 3; j++) { |
436 | > | if (maxVal < (tmp = fabs(v(i, j)))){ |
437 | > | maxVal = tmp; |
438 | > | maxI = j; |
439 | > | } |
440 | > | } |
441 | ||
442 | < | // swap the eigenvector into its proper position |
443 | < | if (maxI != i) { |
444 | < | tmp = w(maxI); |
445 | < | w(maxI) = w(i); |
446 | < | w(i) = tmp; |
442 | > | // swap the eigenvector into its proper position |
443 | > | if (maxI != i) { |
444 | > | tmp = w(maxI); |
445 | > | w(maxI) = w(i); |
446 | > | w(i) = tmp; |
447 | ||
448 | < | v.swapRow(i, maxI); |
449 | < | } |
450 | < | // maximum element of eigenvector should be positive |
451 | < | if (v(maxI, maxI) < 0) { |
452 | < | v(maxI, 0) = -v(maxI, 0); |
453 | < | v(maxI, 1) = -v(maxI, 1); |
454 | < | v(maxI, 2) = -v(maxI, 2); |
455 | < | } |
448 | > | v.swapRow(i, maxI); |
449 | > | } |
450 | > | // maximum element of eigenvector should be positive |
451 | > | if (v(maxI, maxI) < 0) { |
452 | > | v(maxI, 0) = -v(maxI, 0); |
453 | > | v(maxI, 1) = -v(maxI, 1); |
454 | > | v(maxI, 2) = -v(maxI, 2); |
455 | > | } |
456 | ||
457 | < | // re-orthogonalize the other two eigenvectors |
458 | < | j = (maxI+1)%3; |
459 | < | k = (maxI+2)%3; |
457 | > | // re-orthogonalize the other two eigenvectors |
458 | > | j = (maxI+1)%3; |
459 | > | k = (maxI+2)%3; |
460 | ||
461 | < | v(j, 0) = 0.0; |
462 | < | v(j, 1) = 0.0; |
463 | < | v(j, 2) = 0.0; |
464 | < | v(j, j) = 1.0; |
461 | > | v(j, 0) = 0.0; |
462 | > | v(j, 1) = 0.0; |
463 | > | v(j, 2) = 0.0; |
464 | > | v(j, j) = 1.0; |
465 | ||
466 | < | /** @todo */ |
467 | < | v_maxI = v.getRow(maxI); |
468 | < | v_j = v.getRow(j); |
469 | < | v_k = cross(v_maxI, v_j); |
470 | < | v_k.normalize(); |
471 | < | v_j = cross(v_k, v_maxI); |
472 | < | v.setRow(j, v_j); |
473 | < | v.setRow(k, v_k); |
466 | > | /** @todo */ |
467 | > | v_maxI = v.getRow(maxI); |
468 | > | v_j = v.getRow(j); |
469 | > | v_k = cross(v_maxI, v_j); |
470 | > | v_k.normalize(); |
471 | > | v_j = cross(v_k, v_maxI); |
472 | > | v.setRow(j, v_j); |
473 | > | v.setRow(k, v_k); |
474 | ||
475 | ||
476 | < | // transpose vectors back to columns |
477 | < | v = v.transpose(); |
478 | < | return; |
479 | < | } |
480 | < | } |
476 | > | // transpose vectors back to columns |
477 | > | v = v.transpose(); |
478 | > | return; |
479 | > | } |
480 | > | } |
481 | ||
482 | < | // the three eigenvalues are different, just sort the eigenvectors |
483 | < | // to align them with the x, y, and z axes |
482 | > | // the three eigenvalues are different, just sort the eigenvectors |
483 | > | // to align them with the x, y, and z axes |
484 | ||
485 | < | // find the vector with the largest x element, make that vector |
486 | < | // the first vector |
487 | < | maxVal = fabs(v(0, 0)); |
488 | < | maxI = 0; |
489 | < | for (i = 1; i < 3; i++) { |
490 | < | if (maxVal < (tmp = fabs(v(i, 0)))) { |
491 | < | maxVal = tmp; |
492 | < | maxI = i; |
493 | < | } |
494 | < | } |
485 | > | // find the vector with the largest x element, make that vector |
486 | > | // the first vector |
487 | > | maxVal = fabs(v(0, 0)); |
488 | > | maxI = 0; |
489 | > | for (i = 1; i < 3; i++) { |
490 | > | if (maxVal < (tmp = fabs(v(i, 0)))) { |
491 | > | maxVal = tmp; |
492 | > | maxI = i; |
493 | > | } |
494 | > | } |
495 | ||
496 | < | // swap eigenvalue and eigenvector |
497 | < | if (maxI != 0) { |
498 | < | tmp = w(maxI); |
499 | < | w(maxI) = w(0); |
500 | < | w(0) = tmp; |
501 | < | v.swapRow(maxI, 0); |
502 | < | } |
503 | < | // do the same for the y element |
504 | < | if (fabs(v(1, 1)) < fabs(v(2, 1))) { |
505 | < | tmp = w(2); |
506 | < | w(2) = w(1); |
507 | < | w(1) = tmp; |
508 | < | v.swapRow(2, 1); |
509 | < | } |
496 | > | // swap eigenvalue and eigenvector |
497 | > | if (maxI != 0) { |
498 | > | tmp = w(maxI); |
499 | > | w(maxI) = w(0); |
500 | > | w(0) = tmp; |
501 | > | v.swapRow(maxI, 0); |
502 | > | } |
503 | > | // do the same for the y element |
504 | > | if (fabs(v(1, 1)) < fabs(v(2, 1))) { |
505 | > | tmp = w(2); |
506 | > | w(2) = w(1); |
507 | > | w(1) = tmp; |
508 | > | v.swapRow(2, 1); |
509 | > | } |
510 | ||
511 | < | // ensure that the sign of the eigenvectors is correct |
512 | < | for (i = 0; i < 2; i++) { |
513 | < | if (v(i, i) < 0) { |
514 | < | v(i, 0) = -v(i, 0); |
515 | < | v(i, 1) = -v(i, 1); |
516 | < | v(i, 2) = -v(i, 2); |
517 | < | } |
518 | < | } |
511 | > | // ensure that the sign of the eigenvectors is correct |
512 | > | for (i = 0; i < 2; i++) { |
513 | > | if (v(i, i) < 0) { |
514 | > | v(i, 0) = -v(i, 0); |
515 | > | v(i, 1) = -v(i, 1); |
516 | > | v(i, 2) = -v(i, 2); |
517 | > | } |
518 | > | } |
519 | ||
520 | < | // set sign of final eigenvector to ensure that determinant is positive |
521 | < | if (v.determinant() < 0) { |
522 | < | v(2, 0) = -v(2, 0); |
523 | < | v(2, 1) = -v(2, 1); |
524 | < | v(2, 2) = -v(2, 2); |
463 | < | } |
464 | < | |
465 | < | // transpose the eigenvectors back again |
466 | < | v = v.transpose(); |
467 | < | return ; |
520 | > | // set sign of final eigenvector to ensure that determinant is positive |
521 | > | if (v.determinant() < 0) { |
522 | > | v(2, 0) = -v(2, 0); |
523 | > | v(2, 1) = -v(2, 1); |
524 | > | v(2, 2) = -v(2, 2); |
525 | } | |
526 | ||
527 | < | /** |
528 | < | * Return the multiplication of two matrixes (m1 * m2). |
529 | < | * @return the multiplication of two matrixes |
530 | < | * @param m1 the first matrix |
474 | < | * @param m2 the second matrix |
475 | < | */ |
476 | < | template<typename Real> |
477 | < | inline SquareMatrix3<Real> operator *(const SquareMatrix3<Real>& m1, const SquareMatrix3<Real>& m2) { |
478 | < | SquareMatrix3<Real> result; |
527 | > | // transpose the eigenvectors back again |
528 | > | v = v.transpose(); |
529 | > | return ; |
530 | > | } |
531 | ||
532 | < | for (unsigned int i = 0; i < 3; i++) |
533 | < | for (unsigned int j = 0; j < 3; j++) |
534 | < | for (unsigned int k = 0; k < 3; k++) |
535 | < | result(i, j) += m1(i, k) * m2(k, j); |
532 | > | /** |
533 | > | * Return the multiplication of two matrixes (m1 * m2). |
534 | > | * @return the multiplication of two matrixes |
535 | > | * @param m1 the first matrix |
536 | > | * @param m2 the second matrix |
537 | > | */ |
538 | > | template<typename Real> |
539 | > | inline SquareMatrix3<Real> operator *(const SquareMatrix3<Real>& m1, const SquareMatrix3<Real>& m2) { |
540 | > | SquareMatrix3<Real> result; |
541 | ||
542 | < | return result; |
543 | < | } |
542 | > | for (unsigned int i = 0; i < 3; i++) |
543 | > | for (unsigned int j = 0; j < 3; j++) |
544 | > | for (unsigned int k = 0; k < 3; k++) |
545 | > | result(i, j) += m1(i, k) * m2(k, j); |
546 | ||
547 | < | template<typename Real> |
548 | < | inline SquareMatrix3<Real> outProduct(const Vector3<Real>& v1, const Vector3<Real>& v2) { |
490 | < | SquareMatrix3<Real> result; |
547 | > | return result; |
548 | > | } |
549 | ||
550 | < | for (unsigned int i = 0; i < 3; i++) { |
551 | < | for (unsigned int j = 0; j < 3; j++) { |
552 | < | result(i, j) = v1[i] * v2[j]; |
553 | < | } |
554 | < | } |
555 | < | |
556 | < | return result; |
550 | > | template<typename Real> |
551 | > | inline SquareMatrix3<Real> outProduct(const Vector3<Real>& v1, const Vector3<Real>& v2) { |
552 | > | SquareMatrix3<Real> result; |
553 | > | |
554 | > | for (unsigned int i = 0; i < 3; i++) { |
555 | > | for (unsigned int j = 0; j < 3; j++) { |
556 | > | result(i, j) = v1[i] * v2[j]; |
557 | > | } |
558 | } | |
559 | + | |
560 | + | return result; |
561 | + | } |
562 | ||
563 | ||
564 | < | typedef SquareMatrix3<double> Mat3x3d; |
565 | < | typedef SquareMatrix3<double> RotMat3x3d; |
564 | > | typedef SquareMatrix3<RealType> Mat3x3d; |
565 | > | typedef SquareMatrix3<RealType> RotMat3x3d; |
566 | ||
567 | } //namespace oopse | |
568 | #endif // MATH_SQUAREMATRIX_HPP |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |