| 6 |
|
* redistribute this software in source and binary code form, provided |
| 7 |
|
* that the following conditions are met: |
| 8 |
|
* |
| 9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
| 10 |
< |
* publication of scientific results based in part on use of the |
| 11 |
< |
* program. An acceptable form of acknowledgement is citation of |
| 12 |
< |
* the article in which the program was described (Matthew |
| 13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
| 14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
| 15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
| 16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
| 17 |
< |
* |
| 18 |
< |
* 2. Redistributions of source code must retain the above copyright |
| 9 |
> |
* 1. Redistributions of source code must retain the above copyright |
| 10 |
|
* notice, this list of conditions and the following disclaimer. |
| 11 |
|
* |
| 12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
| 12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
| 13 |
|
* notice, this list of conditions and the following disclaimer in the |
| 14 |
|
* documentation and/or other materials provided with the |
| 15 |
|
* distribution. |
| 28 |
|
* arising out of the use of or inability to use software, even if the |
| 29 |
|
* University of Notre Dame has been advised of the possibility of |
| 30 |
|
* such damages. |
| 31 |
+ |
* |
| 32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
| 33 |
+ |
* research, please cite the appropriate papers when you publish your |
| 34 |
+ |
* work. Good starting points are: |
| 35 |
+ |
* |
| 36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
| 40 |
|
*/ |
| 41 |
|
|
| 42 |
|
/** |
| 47 |
|
*/ |
| 48 |
|
#ifndef MATH_SQUAREMATRIX3_HPP |
| 49 |
|
#define MATH_SQUAREMATRIX3_HPP |
| 50 |
< |
|
| 50 |
> |
#include <vector> |
| 51 |
|
#include "Quaternion.hpp" |
| 52 |
|
#include "SquareMatrix.hpp" |
| 53 |
|
#include "Vector3.hpp" |
| 54 |
|
#include "utils/NumericConstant.hpp" |
| 55 |
< |
namespace oopse { |
| 55 |
> |
namespace OpenMD { |
| 56 |
|
|
| 57 |
|
template<typename Real> |
| 58 |
|
class SquareMatrix3 : public SquareMatrix<Real, 3> { |
| 166 |
|
void setupRotMat(Real w, Real x, Real y, Real z) { |
| 167 |
|
Quaternion<Real> q(w, x, y, z); |
| 168 |
|
*this = q.toRotationMatrix3(); |
| 169 |
+ |
} |
| 170 |
+ |
|
| 171 |
+ |
void setupSkewMat(Vector3<Real> v) { |
| 172 |
+ |
setupSkewMat(v[0], v[1], v[2]); |
| 173 |
+ |
} |
| 174 |
+ |
|
| 175 |
+ |
void setupSkewMat(Real v1, Real v2, Real v3) { |
| 176 |
+ |
this->data_[0][0] = 0; |
| 177 |
+ |
this->data_[0][1] = -v3; |
| 178 |
+ |
this->data_[0][2] = v2; |
| 179 |
+ |
this->data_[1][0] = v3; |
| 180 |
+ |
this->data_[1][1] = 0; |
| 181 |
+ |
this->data_[1][2] = -v1; |
| 182 |
+ |
this->data_[2][0] = -v2; |
| 183 |
+ |
this->data_[2][1] = v1; |
| 184 |
+ |
this->data_[2][2] = 0; |
| 185 |
+ |
|
| 186 |
+ |
|
| 187 |
|
} |
| 188 |
|
|
| 189 |
+ |
|
| 190 |
+ |
|
| 191 |
|
/** |
| 192 |
|
* Returns the quaternion from this rotation matrix |
| 193 |
|
* @return the quaternion from this rotation matrix |
| 208 |
|
q[3] = (this->data_[0][1] - this->data_[1][0]) * s; |
| 209 |
|
} else { |
| 210 |
|
|
| 211 |
< |
ad1 = fabs( this->data_[0][0] ); |
| 212 |
< |
ad2 = fabs( this->data_[1][1] ); |
| 213 |
< |
ad3 = fabs( this->data_[2][2] ); |
| 211 |
> |
ad1 = this->data_[0][0]; |
| 212 |
> |
ad2 = this->data_[1][1]; |
| 213 |
> |
ad3 = this->data_[2][2]; |
| 214 |
|
|
| 215 |
|
if( ad1 >= ad2 && ad1 >= ad3 ){ |
| 216 |
|
|
| 244 |
|
* @return the euler angles in a vector |
| 245 |
|
* @exception invalid rotation matrix |
| 246 |
|
* We use so-called "x-convention", which is the most common definition. |
| 247 |
< |
* In this convention, the rotation given by Euler angles (phi, theta, psi), where the first |
| 248 |
< |
* rotation is by an angle phi about the z-axis, the second is by an angle |
| 249 |
< |
* theta (0 <= theta <= 180)about the x-axis, and thethird is by an angle psi about the |
| 250 |
< |
* z-axis (again). |
| 247 |
> |
* In this convention, the rotation given by Euler angles (phi, theta, |
| 248 |
> |
* psi), where the first rotation is by an angle phi about the z-axis, |
| 249 |
> |
* the second is by an angle theta (0 <= theta <= 180) about the x-axis, |
| 250 |
> |
* and the third is by an angle psi about the z-axis (again). |
| 251 |
|
*/ |
| 252 |
|
Vector3<Real> toEulerAngles() { |
| 253 |
|
Vector3<Real> myEuler; |
| 259 |
|
|
| 260 |
|
// set the tolerance for Euler angles and rotation elements |
| 261 |
|
|
| 262 |
< |
theta = acos(std::min(1.0, std::max(-1.0,this->data_[2][2]))); |
| 262 |
> |
theta = acos(std::min((RealType)1.0, std::max((RealType)-1.0,this->data_[2][2]))); |
| 263 |
|
ctheta = this->data_[2][2]; |
| 264 |
|
stheta = sqrt(1.0 - ctheta * ctheta); |
| 265 |
|
|
| 266 |
< |
// when sin(theta) is close to 0, we need to consider singularity |
| 267 |
< |
// In this case, we can assign an arbitary value to phi (or psi), and then determine |
| 268 |
< |
// the psi (or phi) or vice-versa. We'll assume that phi always gets the rotation, and psi is 0 |
| 269 |
< |
// in cases of singularity. |
| 266 |
> |
// when sin(theta) is close to 0, we need to consider |
| 267 |
> |
// singularity In this case, we can assign an arbitary value to |
| 268 |
> |
// phi (or psi), and then determine the psi (or phi) or |
| 269 |
> |
// vice-versa. We'll assume that phi always gets the rotation, |
| 270 |
> |
// and psi is 0 in cases of singularity. |
| 271 |
|
// we use atan2 instead of atan, since atan2 will give us -Pi to Pi. |
| 272 |
< |
// Since 0 <= theta <= 180, sin(theta) will be always non-negative. Therefore, it never |
| 273 |
< |
// change the sign of both of the parameters passed to atan2. |
| 272 |
> |
// Since 0 <= theta <= 180, sin(theta) will be always |
| 273 |
> |
// non-negative. Therefore, it will never change the sign of both of |
| 274 |
> |
// the parameters passed to atan2. |
| 275 |
|
|
| 276 |
< |
if (fabs(stheta) <= oopse::epsilon){ |
| 276 |
> |
if (fabs(stheta) < 1e-6){ |
| 277 |
|
psi = 0.0; |
| 278 |
|
phi = atan2(-this->data_[1][0], this->data_[0][0]); |
| 279 |
|
} |
| 285 |
|
|
| 286 |
|
//wrap phi and psi, make sure they are in the range from 0 to 2*Pi |
| 287 |
|
if (phi < 0) |
| 288 |
< |
phi += M_PI; |
| 288 |
> |
phi += 2.0 * M_PI; |
| 289 |
|
|
| 290 |
|
if (psi < 0) |
| 291 |
< |
psi += M_PI; |
| 291 |
> |
psi += 2.0 * M_PI; |
| 292 |
|
|
| 293 |
|
myEuler[0] = phi; |
| 294 |
|
myEuler[1] = theta; |
| 320 |
|
*/ |
| 321 |
|
SquareMatrix3<Real> inverse() const { |
| 322 |
|
SquareMatrix3<Real> m; |
| 323 |
< |
double det = determinant(); |
| 324 |
< |
if (fabs(det) <= oopse::epsilon) { |
| 323 |
> |
RealType det = determinant(); |
| 324 |
> |
if (fabs(det) <= OpenMD::epsilon) { |
| 325 |
|
//"The method was called on a matrix with |determinant| <= 1e-6.", |
| 326 |
|
//"This is a runtime or a programming error in your application."); |
| 327 |
< |
} |
| 327 |
> |
std::vector<int> zeroDiagElementIndex; |
| 328 |
> |
for (int i =0; i < 3; ++i) { |
| 329 |
> |
if (fabs(this->data_[i][i]) <= OpenMD::epsilon) { |
| 330 |
> |
zeroDiagElementIndex.push_back(i); |
| 331 |
> |
} |
| 332 |
> |
} |
| 333 |
|
|
| 334 |
< |
m(0, 0) = this->data_[1][1]*this->data_[2][2] - this->data_[1][2]*this->data_[2][1]; |
| 335 |
< |
m(1, 0) = this->data_[1][2]*this->data_[2][0] - this->data_[1][0]*this->data_[2][2]; |
| 336 |
< |
m(2, 0) = this->data_[1][0]*this->data_[2][1] - this->data_[1][1]*this->data_[2][0]; |
| 337 |
< |
m(0, 1) = this->data_[2][1]*this->data_[0][2] - this->data_[2][2]*this->data_[0][1]; |
| 311 |
< |
m(1, 1) = this->data_[2][2]*this->data_[0][0] - this->data_[2][0]*this->data_[0][2]; |
| 312 |
< |
m(2, 1) = this->data_[2][0]*this->data_[0][1] - this->data_[2][1]*this->data_[0][0]; |
| 313 |
< |
m(0, 2) = this->data_[0][1]*this->data_[1][2] - this->data_[0][2]*this->data_[1][1]; |
| 314 |
< |
m(1, 2) = this->data_[0][2]*this->data_[1][0] - this->data_[0][0]*this->data_[1][2]; |
| 315 |
< |
m(2, 2) = this->data_[0][0]*this->data_[1][1] - this->data_[0][1]*this->data_[1][0]; |
| 334 |
> |
if (zeroDiagElementIndex.size() == 2) { |
| 335 |
> |
int index = zeroDiagElementIndex[0]; |
| 336 |
> |
m(index, index) = 1.0 / this->data_[index][index]; |
| 337 |
> |
}else if (zeroDiagElementIndex.size() == 1) { |
| 338 |
|
|
| 339 |
< |
m /= det; |
| 339 |
> |
int a = (zeroDiagElementIndex[0] + 1) % 3; |
| 340 |
> |
int b = (zeroDiagElementIndex[0] + 2) %3; |
| 341 |
> |
RealType denom = this->data_[a][a] * this->data_[b][b] - this->data_[b][a]*this->data_[a][b]; |
| 342 |
> |
m(a, a) = this->data_[b][b] /denom; |
| 343 |
> |
m(b, a) = -this->data_[b][a]/denom; |
| 344 |
> |
|
| 345 |
> |
m(a,b) = -this->data_[a][b]/denom; |
| 346 |
> |
m(b, b) = this->data_[a][a]/denom; |
| 347 |
> |
|
| 348 |
> |
} |
| 349 |
> |
|
| 350 |
> |
/* |
| 351 |
> |
for(std::vector<int>::iterator iter = zeroDiagElementIndex.begin(); iter != zeroDiagElementIndex.end() ++iter) { |
| 352 |
> |
if (this->data_[*iter][0] > OpenMD::epsilon || this->data_[*iter][1] ||this->data_[*iter][2] || |
| 353 |
> |
this->data_[0][*iter] > OpenMD::epsilon || this->data_[1][*iter] ||this->data_[2][*iter] ) { |
| 354 |
> |
std::cout << "can not inverse matrix" << std::endl; |
| 355 |
> |
} |
| 356 |
> |
} |
| 357 |
> |
*/ |
| 358 |
> |
} else { |
| 359 |
> |
|
| 360 |
> |
m(0, 0) = this->data_[1][1]*this->data_[2][2] - this->data_[1][2]*this->data_[2][1]; |
| 361 |
> |
m(1, 0) = this->data_[1][2]*this->data_[2][0] - this->data_[1][0]*this->data_[2][2]; |
| 362 |
> |
m(2, 0) = this->data_[1][0]*this->data_[2][1] - this->data_[1][1]*this->data_[2][0]; |
| 363 |
> |
m(0, 1) = this->data_[2][1]*this->data_[0][2] - this->data_[2][2]*this->data_[0][1]; |
| 364 |
> |
m(1, 1) = this->data_[2][2]*this->data_[0][0] - this->data_[2][0]*this->data_[0][2]; |
| 365 |
> |
m(2, 1) = this->data_[2][0]*this->data_[0][1] - this->data_[2][1]*this->data_[0][0]; |
| 366 |
> |
m(0, 2) = this->data_[0][1]*this->data_[1][2] - this->data_[0][2]*this->data_[1][1]; |
| 367 |
> |
m(1, 2) = this->data_[0][2]*this->data_[1][0] - this->data_[0][0]*this->data_[1][2]; |
| 368 |
> |
m(2, 2) = this->data_[0][0]*this->data_[1][1] - this->data_[0][1]*this->data_[1][0]; |
| 369 |
> |
|
| 370 |
> |
m /= det; |
| 371 |
> |
} |
| 372 |
|
return m; |
| 373 |
|
} |
| 374 |
+ |
|
| 375 |
+ |
SquareMatrix3<Real> transpose() const{ |
| 376 |
+ |
SquareMatrix3<Real> result; |
| 377 |
+ |
|
| 378 |
+ |
for (unsigned int i = 0; i < 3; i++) |
| 379 |
+ |
for (unsigned int j = 0; j < 3; j++) |
| 380 |
+ |
result(j, i) = this->data_[i][j]; |
| 381 |
+ |
|
| 382 |
+ |
return result; |
| 383 |
+ |
} |
| 384 |
|
/** |
| 385 |
|
* Extract the eigenvalues and eigenvectors from a 3x3 matrix. |
| 386 |
|
* The eigenvectors (the columns of V) will be normalized. |
| 563 |
|
} |
| 564 |
|
|
| 565 |
|
|
| 566 |
< |
typedef SquareMatrix3<double> Mat3x3d; |
| 567 |
< |
typedef SquareMatrix3<double> RotMat3x3d; |
| 566 |
> |
typedef SquareMatrix3<RealType> Mat3x3d; |
| 567 |
> |
typedef SquareMatrix3<RealType> RotMat3x3d; |
| 568 |
|
|
| 569 |
< |
} //namespace oopse |
| 569 |
> |
} //namespace OpenMD |
| 570 |
|
#endif // MATH_SQUAREMATRIX_HPP |
| 571 |
|
|