| 1 | 
/* | 
| 2 | 
 * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project | 
| 3 | 
 *  | 
| 4 | 
 * Contact: oopse@oopse.org | 
| 5 | 
 *  | 
| 6 | 
 * This program is free software; you can redistribute it and/or | 
| 7 | 
 * modify it under the terms of the GNU Lesser General Public License | 
| 8 | 
 * as published by the Free Software Foundation; either version 2.1 | 
| 9 | 
 * of the License, or (at your option) any later version. | 
| 10 | 
 * All we ask is that proper credit is given for our work, which includes | 
| 11 | 
 * - but is not limited to - adding the above copyright notice to the beginning | 
| 12 | 
 * of your source code files, and to any copyright notice that you may distribute | 
| 13 | 
 * with programs based on this work. | 
| 14 | 
 *  | 
| 15 | 
 * This program is distributed in the hope that it will be useful, | 
| 16 | 
 * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 17 | 
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| 18 | 
 * GNU Lesser General Public License for more details. | 
| 19 | 
 *  | 
| 20 | 
 * You should have received a copy of the GNU Lesser General Public License | 
| 21 | 
 * along with this program; if not, write to the Free Software | 
| 22 | 
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA. | 
| 23 | 
 * | 
| 24 | 
 */ | 
| 25 | 
 | 
| 26 | 
/** | 
| 27 | 
 * @file SquareMatrix3.hpp | 
| 28 | 
 * @author Teng Lin | 
| 29 | 
 * @date 10/11/2004 | 
| 30 | 
 * @version 1.0 | 
| 31 | 
 */ | 
| 32 | 
#ifndef MATH_SQUAREMATRIX_HPP | 
| 33 | 
#define  MATH_SQUAREMATRIX_HPP | 
| 34 | 
 | 
| 35 | 
#include "Quaternion.hpp" | 
| 36 | 
#include "SquareMatrix.hpp" | 
| 37 | 
#include "Vector3.hpp" | 
| 38 | 
 | 
| 39 | 
namespace oopse { | 
| 40 | 
 | 
| 41 | 
    template<typename Real> | 
| 42 | 
    class SquareMatrix3 : public SquareMatrix<Real, 3> { | 
| 43 | 
        public: | 
| 44 | 
             | 
| 45 | 
            /** default constructor */ | 
| 46 | 
            SquareMatrix3() : SquareMatrix<Real, 3>() { | 
| 47 | 
            } | 
| 48 | 
 | 
| 49 | 
            /** copy  constructor */ | 
| 50 | 
            SquareMatrix3(const SquareMatrix<Real, 3>& m)  : SquareMatrix<Real, 3>(m) { | 
| 51 | 
            } | 
| 52 | 
 | 
| 53 | 
            SquareMatrix3( const Vector3<Real>& eulerAngles) { | 
| 54 | 
                setupRotMat(eulerAngles); | 
| 55 | 
            } | 
| 56 | 
             | 
| 57 | 
            SquareMatrix3(Real phi, Real theta, Real psi) { | 
| 58 | 
                setupRotMat(phi, theta, psi); | 
| 59 | 
            } | 
| 60 | 
 | 
| 61 | 
            SquareMatrix3(const Quaternion<Real>& q) { | 
| 62 | 
                *this = q.toRotationMatrix3(); | 
| 63 | 
            } | 
| 64 | 
 | 
| 65 | 
            SquareMatrix3(Real w, Real x, Real y, Real z) { | 
| 66 | 
                Quaternion<Real> q(w, x, y, z); | 
| 67 | 
                *this = q.toRotationMatrix3(); | 
| 68 | 
            } | 
| 69 | 
             | 
| 70 | 
            /** copy assignment operator */ | 
| 71 | 
            SquareMatrix3<Real>& operator =(const SquareMatrix<Real, 3>& m) { | 
| 72 | 
                if (this == &m) | 
| 73 | 
                    return *this; | 
| 74 | 
                 SquareMatrix<Real, 3>::operator=(m); | 
| 75 | 
            } | 
| 76 | 
 | 
| 77 | 
            /** | 
| 78 | 
             * Sets this matrix to a rotation matrix by three euler angles | 
| 79 | 
             * @ param euler | 
| 80 | 
             */ | 
| 81 | 
            void setupRotMat(const Vector3<Real>& eulerAngles) { | 
| 82 | 
                setupRotMat(eulerAngles[0], eulerAngles[1], eulerAngles[2]); | 
| 83 | 
            } | 
| 84 | 
 | 
| 85 | 
            /** | 
| 86 | 
             * Sets this matrix to a rotation matrix by three euler angles | 
| 87 | 
             * @param phi | 
| 88 | 
             * @param theta | 
| 89 | 
             * @psi theta | 
| 90 | 
             */ | 
| 91 | 
            void setupRotMat(Real phi, Real theta, Real psi) { | 
| 92 | 
                Real sphi, stheta, spsi; | 
| 93 | 
                Real cphi, ctheta, cpsi; | 
| 94 | 
 | 
| 95 | 
                sphi = sin(phi); | 
| 96 | 
                stheta = sin(theta); | 
| 97 | 
                spsi = sin(psi); | 
| 98 | 
                cphi = cos(phi); | 
| 99 | 
                ctheta = cos(theta); | 
| 100 | 
                cpsi = cos(psi); | 
| 101 | 
 | 
| 102 | 
                data_[0][0] = cpsi * cphi - ctheta * sphi * spsi; | 
| 103 | 
                data_[0][1] = cpsi * sphi + ctheta * cphi * spsi; | 
| 104 | 
                data_[0][2] = spsi * stheta; | 
| 105 | 
                 | 
| 106 | 
                data_[1][0] = -spsi * ctheta - ctheta * sphi * cpsi; | 
| 107 | 
                data_[1][1] = -spsi * stheta + ctheta * cphi * cpsi; | 
| 108 | 
                data_[1][2] = cpsi * stheta; | 
| 109 | 
 | 
| 110 | 
                data_[2][0] = stheta * sphi; | 
| 111 | 
                data_[2][1] = -stheta * cphi; | 
| 112 | 
                data_[2][2] = ctheta; | 
| 113 | 
            } | 
| 114 | 
 | 
| 115 | 
 | 
| 116 | 
            /** | 
| 117 | 
             * Sets this matrix to a rotation matrix by quaternion | 
| 118 | 
             * @param quat | 
| 119 | 
            */ | 
| 120 | 
            void setupRotMat(const Quaternion<Real>& quat) { | 
| 121 | 
                *this = quat.toRotationMatrix3(); | 
| 122 | 
            } | 
| 123 | 
 | 
| 124 | 
            /** | 
| 125 | 
             * Sets this matrix to a rotation matrix by quaternion | 
| 126 | 
             * @param w the first element  | 
| 127 | 
             * @param x the second element | 
| 128 | 
             * @param y the third element | 
| 129 | 
             * @parma z the fourth element | 
| 130 | 
            */ | 
| 131 | 
            void setupRotMat(Real w, Real x, Real y, Real z) { | 
| 132 | 
                Quaternion<Real> q(w, x, y, z); | 
| 133 | 
                *this = q.toRotationMatrix3(); | 
| 134 | 
            } | 
| 135 | 
 | 
| 136 | 
            /** | 
| 137 | 
             * Returns the quaternion from this rotation matrix | 
| 138 | 
             * @return the quaternion from this rotation matrix | 
| 139 | 
             * @exception invalid rotation matrix | 
| 140 | 
            */             | 
| 141 | 
            Quaternion<Real> toQuaternion() { | 
| 142 | 
                Quaternion<Real> q; | 
| 143 | 
                Real t, s; | 
| 144 | 
                Real ad1, ad2, ad3;     | 
| 145 | 
                t = data_[0][0] + data_[1][1] + data_[2][2] + 1.0; | 
| 146 | 
 | 
| 147 | 
                if( t > 0.0 ){ | 
| 148 | 
 | 
| 149 | 
                    s = 0.5 / sqrt( t ); | 
| 150 | 
                    q[0] = 0.25 / s; | 
| 151 | 
                    q[1] = (data_[1][2] - data_[2][1]) * s; | 
| 152 | 
                    q[2] = (data_[2][0] - data_[0][2]) * s; | 
| 153 | 
                    q[3] = (data_[0][1] - data_[1][0]) * s; | 
| 154 | 
                } else { | 
| 155 | 
 | 
| 156 | 
                    ad1 = fabs( data_[0][0] ); | 
| 157 | 
                    ad2 = fabs( data_[1][1] ); | 
| 158 | 
                    ad3 = fabs( data_[2][2] ); | 
| 159 | 
 | 
| 160 | 
                    if( ad1 >= ad2 && ad1 >= ad3 ){ | 
| 161 | 
 | 
| 162 | 
                        s = 2.0 * sqrt( 1.0 + data_[0][0] - data_[1][1] - data_[2][2] ); | 
| 163 | 
                        q[0] = (data_[1][2] + data_[2][1]) / s; | 
| 164 | 
                        q[1] = 0.5 / s; | 
| 165 | 
                        q[2] = (data_[0][1] + data_[1][0]) / s; | 
| 166 | 
                        q[3] = (data_[0][2] + data_[2][0]) / s; | 
| 167 | 
                    } else if ( ad2 >= ad1 && ad2 >= ad3 ) { | 
| 168 | 
                        s = sqrt( 1.0 + data_[1][1] - data_[0][0] - data_[2][2] ) * 2.0; | 
| 169 | 
                        q[0] = (data_[0][2] + data_[2][0]) / s; | 
| 170 | 
                        q[1] = (data_[0][1] + data_[1][0]) / s; | 
| 171 | 
                        q[2] = 0.5 / s; | 
| 172 | 
                        q[3] = (data_[1][2] + data_[2][1]) / s; | 
| 173 | 
                    } else { | 
| 174 | 
 | 
| 175 | 
                        s = sqrt( 1.0 + data_[2][2] - data_[0][0] - data_[1][1] ) * 2.0; | 
| 176 | 
                        q[0] = (data_[0][1] + data_[1][0]) / s; | 
| 177 | 
                        q[1] = (data_[0][2] + data_[2][0]) / s; | 
| 178 | 
                        q[2] = (data_[1][2] + data_[2][1]) / s; | 
| 179 | 
                        q[3] = 0.5 / s; | 
| 180 | 
                    } | 
| 181 | 
                }              | 
| 182 | 
 | 
| 183 | 
                return q; | 
| 184 | 
                 | 
| 185 | 
            } | 
| 186 | 
 | 
| 187 | 
            /** | 
| 188 | 
             * Returns the euler angles from this rotation matrix | 
| 189 | 
             * @return the euler angles in a vector  | 
| 190 | 
             * @exception invalid rotation matrix | 
| 191 | 
             * We use so-called "x-convention", which is the most common definition.  | 
| 192 | 
             * In this convention, the rotation given by Euler angles (phi, theta, psi), where the first  | 
| 193 | 
             * rotation is by an angle phi about the z-axis, the second is by an angle   | 
| 194 | 
             * theta (0 <= theta <= 180)about the x-axis, and thethird is by an angle psi about the | 
| 195 | 
             * z-axis (again).  | 
| 196 | 
            */             | 
| 197 | 
            Vector3<Real> toEulerAngles() { | 
| 198 | 
                Vector<Real> myEuler; | 
| 199 | 
                Real phi,theta,psi,eps; | 
| 200 | 
                Real ctheta,stheta; | 
| 201 | 
                 | 
| 202 | 
                // set the tolerance for Euler angles and rotation elements | 
| 203 | 
 | 
| 204 | 
                theta = acos(min(1.0,max(-1.0,data_[2][2]))); | 
| 205 | 
                ctheta = data_[2][2];  | 
| 206 | 
                stheta = sqrt(1.0 - ctheta * ctheta); | 
| 207 | 
 | 
| 208 | 
                // when sin(theta) is close to 0, we need to consider singularity | 
| 209 | 
                // In this case, we can assign an arbitary value to phi (or psi), and then determine  | 
| 210 | 
                // the psi (or phi) or vice-versa. We'll assume that phi always gets the rotation, and psi is 0 | 
| 211 | 
                // in cases of singularity.   | 
| 212 | 
                // we use atan2 instead of atan, since atan2 will give us -Pi to Pi.  | 
| 213 | 
                // Since 0 <= theta <= 180, sin(theta) will be always non-negative. Therefore, it never | 
| 214 | 
                // change the sign of both of the parameters passed to atan2. | 
| 215 | 
 | 
| 216 | 
                if (fabs(stheta) <= oopse::epsilon){ | 
| 217 | 
                    psi = 0.0; | 
| 218 | 
                    phi = atan2(-data_[1][0], data_[0][0]);   | 
| 219 | 
                } | 
| 220 | 
                // we only have one unique solution | 
| 221 | 
                else{     | 
| 222 | 
                    phi = atan2(data_[2][0], -data_[2][1]); | 
| 223 | 
                    psi = atan2(data_[0][2], data_[1][2]); | 
| 224 | 
                } | 
| 225 | 
 | 
| 226 | 
                //wrap phi and psi, make sure they are in the range from 0 to 2*Pi | 
| 227 | 
                if (phi < 0) | 
| 228 | 
                  phi += M_PI; | 
| 229 | 
 | 
| 230 | 
                if (psi < 0) | 
| 231 | 
                  psi += M_PI; | 
| 232 | 
 | 
| 233 | 
                myEuler[0] = phi; | 
| 234 | 
                myEuler[1] = theta; | 
| 235 | 
                myEuler[2] = psi; | 
| 236 | 
 | 
| 237 | 
                return myEuler; | 
| 238 | 
            } | 
| 239 | 
             | 
| 240 | 
            /** | 
| 241 | 
             * Sets the value of this matrix to  the inversion of itself.  | 
| 242 | 
             * @note since simple algorithm can be applied to inverse the 3 by 3 matrix, we hide the  | 
| 243 | 
             * implementation of inverse in SquareMatrix class | 
| 244 | 
             */ | 
| 245 | 
            void  inverse(); | 
| 246 | 
 | 
| 247 | 
            void diagonalize(); | 
| 248 | 
 | 
| 249 | 
    }; | 
| 250 | 
 | 
| 251 | 
    typedef template SquareMatrix3<double> Mat3x3d | 
| 252 | 
    typedef template SquareMatrix3<double> RotMat3x3d; | 
| 253 | 
 | 
| 254 | 
} //namespace oopse | 
| 255 | 
#endif // MATH_SQUAREMATRIX_HPP |