| 1 | /* | 
| 2 | * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project | 
| 3 | * | 
| 4 | * Contact: oopse@oopse.org | 
| 5 | * | 
| 6 | * This program is free software; you can redistribute it and/or | 
| 7 | * modify it under the terms of the GNU Lesser General Public License | 
| 8 | * as published by the Free Software Foundation; either version 2.1 | 
| 9 | * of the License, or (at your option) any later version. | 
| 10 | * All we ask is that proper credit is given for our work, which includes | 
| 11 | * - but is not limited to - adding the above copyright notice to the beginning | 
| 12 | * of your source code files, and to any copyright notice that you may distribute | 
| 13 | * with programs based on this work. | 
| 14 | * | 
| 15 | * This program is distributed in the hope that it will be useful, | 
| 16 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| 18 | * GNU Lesser General Public License for more details. | 
| 19 | * | 
| 20 | * You should have received a copy of the GNU Lesser General Public License | 
| 21 | * along with this program; if not, write to the Free Software | 
| 22 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA. | 
| 23 | * | 
| 24 | */ | 
| 25 |  | 
| 26 | /** | 
| 27 | * @file SquareMatrix3.hpp | 
| 28 | * @author Teng Lin | 
| 29 | * @date 10/11/2004 | 
| 30 | * @version 1.0 | 
| 31 | */ | 
| 32 | #ifndef MATH_SQUAREMATRIX3_HPP | 
| 33 | #define  MATH_SQUAREMATRIX3_HPP | 
| 34 |  | 
| 35 | #include "Quaternion.hpp" | 
| 36 | #include "SquareMatrix.hpp" | 
| 37 | #include "Vector3.hpp" | 
| 38 |  | 
| 39 | namespace oopse { | 
| 40 |  | 
| 41 | template<typename Real> | 
| 42 | class SquareMatrix3 : public SquareMatrix<Real, 3> { | 
| 43 | public: | 
| 44 |  | 
| 45 | /** default constructor */ | 
| 46 | SquareMatrix3() : SquareMatrix<Real, 3>() { | 
| 47 | } | 
| 48 |  | 
| 49 | /** copy  constructor */ | 
| 50 | SquareMatrix3(const SquareMatrix<Real, 3>& m)  : SquareMatrix<Real, 3>(m) { | 
| 51 | } | 
| 52 |  | 
| 53 | SquareMatrix3( const Vector3<Real>& eulerAngles) { | 
| 54 | setupRotMat(eulerAngles); | 
| 55 | } | 
| 56 |  | 
| 57 | SquareMatrix3(Real phi, Real theta, Real psi) { | 
| 58 | setupRotMat(phi, theta, psi); | 
| 59 | } | 
| 60 |  | 
| 61 | SquareMatrix3(const Quaternion<Real>& q) { | 
| 62 | *this = q.toRotationMatrix3(); | 
| 63 | } | 
| 64 |  | 
| 65 | SquareMatrix3(Real w, Real x, Real y, Real z) { | 
| 66 | Quaternion<Real> q(w, x, y, z); | 
| 67 | *this = q.toRotationMatrix3(); | 
| 68 | } | 
| 69 |  | 
| 70 | /** copy assignment operator */ | 
| 71 | SquareMatrix3<Real>& operator =(const SquareMatrix<Real, 3>& m) { | 
| 72 | if (this == &m) | 
| 73 | return *this; | 
| 74 | SquareMatrix<Real, 3>::operator=(m); | 
| 75 | } | 
| 76 |  | 
| 77 | /** | 
| 78 | * Sets this matrix to a rotation matrix by three euler angles | 
| 79 | * @ param euler | 
| 80 | */ | 
| 81 | void setupRotMat(const Vector3<Real>& eulerAngles) { | 
| 82 | setupRotMat(eulerAngles[0], eulerAngles[1], eulerAngles[2]); | 
| 83 | } | 
| 84 |  | 
| 85 | /** | 
| 86 | * Sets this matrix to a rotation matrix by three euler angles | 
| 87 | * @param phi | 
| 88 | * @param theta | 
| 89 | * @psi theta | 
| 90 | */ | 
| 91 | void setupRotMat(Real phi, Real theta, Real psi) { | 
| 92 | Real sphi, stheta, spsi; | 
| 93 | Real cphi, ctheta, cpsi; | 
| 94 |  | 
| 95 | sphi = sin(phi); | 
| 96 | stheta = sin(theta); | 
| 97 | spsi = sin(psi); | 
| 98 | cphi = cos(phi); | 
| 99 | ctheta = cos(theta); | 
| 100 | cpsi = cos(psi); | 
| 101 |  | 
| 102 | data_[0][0] = cpsi * cphi - ctheta * sphi * spsi; | 
| 103 | data_[0][1] = cpsi * sphi + ctheta * cphi * spsi; | 
| 104 | data_[0][2] = spsi * stheta; | 
| 105 |  | 
| 106 | data_[1][0] = -spsi * ctheta - ctheta * sphi * cpsi; | 
| 107 | data_[1][1] = -spsi * stheta + ctheta * cphi * cpsi; | 
| 108 | data_[1][2] = cpsi * stheta; | 
| 109 |  | 
| 110 | data_[2][0] = stheta * sphi; | 
| 111 | data_[2][1] = -stheta * cphi; | 
| 112 | data_[2][2] = ctheta; | 
| 113 | } | 
| 114 |  | 
| 115 |  | 
| 116 | /** | 
| 117 | * Sets this matrix to a rotation matrix by quaternion | 
| 118 | * @param quat | 
| 119 | */ | 
| 120 | void setupRotMat(const Quaternion<Real>& quat) { | 
| 121 | *this = quat.toRotationMatrix3(); | 
| 122 | } | 
| 123 |  | 
| 124 | /** | 
| 125 | * Sets this matrix to a rotation matrix by quaternion | 
| 126 | * @param w the first element | 
| 127 | * @param x the second element | 
| 128 | * @param y the third element | 
| 129 | * @parma z the fourth element | 
| 130 | */ | 
| 131 | void setupRotMat(Real w, Real x, Real y, Real z) { | 
| 132 | Quaternion<Real> q(w, x, y, z); | 
| 133 | *this = q.toRotationMatrix3(); | 
| 134 | } | 
| 135 |  | 
| 136 | /** | 
| 137 | * Returns the quaternion from this rotation matrix | 
| 138 | * @return the quaternion from this rotation matrix | 
| 139 | * @exception invalid rotation matrix | 
| 140 | */ | 
| 141 | Quaternion<Real> toQuaternion() { | 
| 142 | Quaternion<Real> q; | 
| 143 | Real t, s; | 
| 144 | Real ad1, ad2, ad3; | 
| 145 | t = data_[0][0] + data_[1][1] + data_[2][2] + 1.0; | 
| 146 |  | 
| 147 | if( t > 0.0 ){ | 
| 148 |  | 
| 149 | s = 0.5 / sqrt( t ); | 
| 150 | q[0] = 0.25 / s; | 
| 151 | q[1] = (data_[1][2] - data_[2][1]) * s; | 
| 152 | q[2] = (data_[2][0] - data_[0][2]) * s; | 
| 153 | q[3] = (data_[0][1] - data_[1][0]) * s; | 
| 154 | } else { | 
| 155 |  | 
| 156 | ad1 = fabs( data_[0][0] ); | 
| 157 | ad2 = fabs( data_[1][1] ); | 
| 158 | ad3 = fabs( data_[2][2] ); | 
| 159 |  | 
| 160 | if( ad1 >= ad2 && ad1 >= ad3 ){ | 
| 161 |  | 
| 162 | s = 2.0 * sqrt( 1.0 + data_[0][0] - data_[1][1] - data_[2][2] ); | 
| 163 | q[0] = (data_[1][2] + data_[2][1]) / s; | 
| 164 | q[1] = 0.5 / s; | 
| 165 | q[2] = (data_[0][1] + data_[1][0]) / s; | 
| 166 | q[3] = (data_[0][2] + data_[2][0]) / s; | 
| 167 | } else if ( ad2 >= ad1 && ad2 >= ad3 ) { | 
| 168 | s = sqrt( 1.0 + data_[1][1] - data_[0][0] - data_[2][2] ) * 2.0; | 
| 169 | q[0] = (data_[0][2] + data_[2][0]) / s; | 
| 170 | q[1] = (data_[0][1] + data_[1][0]) / s; | 
| 171 | q[2] = 0.5 / s; | 
| 172 | q[3] = (data_[1][2] + data_[2][1]) / s; | 
| 173 | } else { | 
| 174 |  | 
| 175 | s = sqrt( 1.0 + data_[2][2] - data_[0][0] - data_[1][1] ) * 2.0; | 
| 176 | q[0] = (data_[0][1] + data_[1][0]) / s; | 
| 177 | q[1] = (data_[0][2] + data_[2][0]) / s; | 
| 178 | q[2] = (data_[1][2] + data_[2][1]) / s; | 
| 179 | q[3] = 0.5 / s; | 
| 180 | } | 
| 181 | } | 
| 182 |  | 
| 183 | return q; | 
| 184 |  | 
| 185 | } | 
| 186 |  | 
| 187 | /** | 
| 188 | * Returns the euler angles from this rotation matrix | 
| 189 | * @return the euler angles in a vector | 
| 190 | * @exception invalid rotation matrix | 
| 191 | * We use so-called "x-convention", which is the most common definition. | 
| 192 | * In this convention, the rotation given by Euler angles (phi, theta, psi), where the first | 
| 193 | * rotation is by an angle phi about the z-axis, the second is by an angle | 
| 194 | * theta (0 <= theta <= 180)about the x-axis, and thethird is by an angle psi about the | 
| 195 | * z-axis (again). | 
| 196 | */ | 
| 197 | Vector3<Real> toEulerAngles() { | 
| 198 | Vector<Real> myEuler; | 
| 199 | Real phi,theta,psi,eps; | 
| 200 | Real ctheta,stheta; | 
| 201 |  | 
| 202 | // set the tolerance for Euler angles and rotation elements | 
| 203 |  | 
| 204 | theta = acos(min(1.0,max(-1.0,data_[2][2]))); | 
| 205 | ctheta = data_[2][2]; | 
| 206 | stheta = sqrt(1.0 - ctheta * ctheta); | 
| 207 |  | 
| 208 | // when sin(theta) is close to 0, we need to consider singularity | 
| 209 | // In this case, we can assign an arbitary value to phi (or psi), and then determine | 
| 210 | // the psi (or phi) or vice-versa. We'll assume that phi always gets the rotation, and psi is 0 | 
| 211 | // in cases of singularity. | 
| 212 | // we use atan2 instead of atan, since atan2 will give us -Pi to Pi. | 
| 213 | // Since 0 <= theta <= 180, sin(theta) will be always non-negative. Therefore, it never | 
| 214 | // change the sign of both of the parameters passed to atan2. | 
| 215 |  | 
| 216 | if (fabs(stheta) <= oopse::epsilon){ | 
| 217 | psi = 0.0; | 
| 218 | phi = atan2(-data_[1][0], data_[0][0]); | 
| 219 | } | 
| 220 | // we only have one unique solution | 
| 221 | else{ | 
| 222 | phi = atan2(data_[2][0], -data_[2][1]); | 
| 223 | psi = atan2(data_[0][2], data_[1][2]); | 
| 224 | } | 
| 225 |  | 
| 226 | //wrap phi and psi, make sure they are in the range from 0 to 2*Pi | 
| 227 | if (phi < 0) | 
| 228 | phi += M_PI; | 
| 229 |  | 
| 230 | if (psi < 0) | 
| 231 | psi += M_PI; | 
| 232 |  | 
| 233 | myEuler[0] = phi; | 
| 234 | myEuler[1] = theta; | 
| 235 | myEuler[2] = psi; | 
| 236 |  | 
| 237 | return myEuler; | 
| 238 | } | 
| 239 |  | 
| 240 | /** | 
| 241 | * Sets the value of this matrix to  the inversion of itself. | 
| 242 | * @note since simple algorithm can be applied to inverse the 3 by 3 matrix, we hide the | 
| 243 | * implementation of inverse in SquareMatrix class | 
| 244 | */ | 
| 245 | void  inverse() { | 
| 246 |  | 
| 247 | } | 
| 248 |  | 
| 249 | void diagonalize() { | 
| 250 |  | 
| 251 | } | 
| 252 | }; | 
| 253 |  | 
| 254 | typedef SquareMatrix3<double> Mat3x3d; | 
| 255 | typedef SquareMatrix3<double> RotMat3x3d; | 
| 256 |  | 
| 257 | } //namespace oopse | 
| 258 | #endif // MATH_SQUAREMATRIX_HPP |