| 244 | 
  | 
     * @return the euler angles in a vector  | 
| 245 | 
  | 
     * @exception invalid rotation matrix | 
| 246 | 
  | 
     * We use so-called "x-convention", which is the most common definition.  | 
| 247 | 
< | 
     * In this convention, the rotation given by Euler angles (phi, theta, psi), where the first  | 
| 248 | 
< | 
     * rotation is by an angle phi about the z-axis, the second is by an angle   | 
| 249 | 
< | 
     * theta (0 <= theta <= 180)about the x-axis, and thethird is by an angle psi about the | 
| 250 | 
< | 
     * z-axis (again).  | 
| 247 | 
> | 
     * In this convention, the rotation given by Euler angles (phi, theta,  | 
| 248 | 
> | 
     * psi), where the first rotation is by an angle phi about the z-axis,  | 
| 249 | 
> | 
     * the second is by an angle theta (0 <= theta <= 180) about the x-axis,  | 
| 250 | 
> | 
     * and the third is by an angle psi about the z-axis (again).  | 
| 251 | 
  | 
     */             | 
| 252 | 
  | 
    Vector3<Real> toEulerAngles() { | 
| 253 | 
  | 
      Vector3<Real> myEuler; | 
| 263 | 
  | 
      ctheta = this->data_[2][2];  | 
| 264 | 
  | 
      stheta = sqrt(1.0 - ctheta * ctheta); | 
| 265 | 
  | 
 | 
| 266 | 
< | 
      // when sin(theta) is close to 0, we need to consider singularity | 
| 267 | 
< | 
      // In this case, we can assign an arbitary value to phi (or psi), and then determine  | 
| 268 | 
< | 
      // the psi (or phi) or vice-versa. We'll assume that phi always gets the rotation, and psi is 0 | 
| 269 | 
< | 
      // in cases of singularity.   | 
| 270 | 
< | 
      // we use atan2 instead of atan, since atan2 will give us -Pi to Pi.  | 
| 271 | 
< | 
      // Since 0 <= theta <= 180, sin(theta) will be always non-negative. Therefore, it never | 
| 272 | 
< | 
      // change the sign of both of the parameters passed to atan2. | 
| 266 | 
> | 
      // when sin(theta) is close to 0, we need to consider | 
| 267 | 
> | 
      // singularity In this case, we can assign an arbitary value to | 
| 268 | 
> | 
      // phi (or psi), and then determine the psi (or phi) or | 
| 269 | 
> | 
      // vice-versa. We'll assume that phi always gets the rotation, | 
| 270 | 
> | 
      // and psi is 0 in cases of singularity. | 
| 271 | 
> | 
      // we use atan2 instead of atan, since atan2 will give us -Pi to Pi.  | 
| 272 | 
> | 
      // Since 0 <= theta <= 180, sin(theta) will be always | 
| 273 | 
> | 
      // non-negative. Therefore, it will never change the sign of both of | 
| 274 | 
> | 
      // the parameters passed to atan2. | 
| 275 | 
  | 
 | 
| 276 | 
< | 
      if (fabs(stheta) <= oopse::epsilon){ | 
| 276 | 
> | 
      if (fabs(stheta) < 1e-6){ | 
| 277 | 
  | 
        psi = 0.0; | 
| 278 | 
  | 
        phi = atan2(-this->data_[1][0], this->data_[0][0]);   | 
| 279 | 
  | 
      } | 
| 285 | 
  | 
 | 
| 286 | 
  | 
      //wrap phi and psi, make sure they are in the range from 0 to 2*Pi | 
| 287 | 
  | 
      if (phi < 0) | 
| 288 | 
< | 
        phi += M_PI; | 
| 288 | 
> | 
        phi += 2.0 * M_PI; | 
| 289 | 
  | 
 | 
| 290 | 
  | 
      if (psi < 0) | 
| 291 | 
< | 
        psi += M_PI; | 
| 291 | 
> | 
        psi += 2.0 * M_PI; | 
| 292 | 
  | 
 | 
| 293 | 
  | 
      myEuler[0] = phi; | 
| 294 | 
  | 
      myEuler[1] = theta; |