| 6 | 
  | 
 * redistribute this software in source and binary code form, provided | 
| 7 | 
  | 
 * that the following conditions are met: | 
| 8 | 
  | 
 * | 
| 9 | 
< | 
 * 1. Acknowledgement of the program authors must be made in any | 
| 10 | 
< | 
 *    publication of scientific results based in part on use of the | 
| 11 | 
< | 
 *    program.  An acceptable form of acknowledgement is citation of | 
| 12 | 
< | 
 *    the article in which the program was described (Matthew | 
| 13 | 
< | 
 *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher | 
| 14 | 
< | 
 *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented | 
| 15 | 
< | 
 *    Parallel Simulation Engine for Molecular Dynamics," | 
| 16 | 
< | 
 *    J. Comput. Chem. 26, pp. 252-271 (2005)) | 
| 17 | 
< | 
 * | 
| 18 | 
< | 
 * 2. Redistributions of source code must retain the above copyright | 
| 9 | 
> | 
 * 1. Redistributions of source code must retain the above copyright | 
| 10 | 
  | 
 *    notice, this list of conditions and the following disclaimer. | 
| 11 | 
  | 
 * | 
| 12 | 
< | 
 * 3. Redistributions in binary form must reproduce the above copyright | 
| 12 | 
> | 
 * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | 
  | 
 *    notice, this list of conditions and the following disclaimer in the | 
| 14 | 
  | 
 *    documentation and/or other materials provided with the | 
| 15 | 
  | 
 *    distribution. | 
| 28 | 
  | 
 * arising out of the use of or inability to use software, even if the | 
| 29 | 
  | 
 * University of Notre Dame has been advised of the possibility of | 
| 30 | 
  | 
 * such damages. | 
| 31 | 
+ | 
 * | 
| 32 | 
+ | 
 * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | 
+ | 
 * research, please cite the appropriate papers when you publish your | 
| 34 | 
+ | 
 * work.  Good starting points are: | 
| 35 | 
+ | 
 *                                                                       | 
| 36 | 
+ | 
 * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).              | 
| 37 | 
+ | 
 * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).           | 
| 38 | 
+ | 
 * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).           | 
| 39 | 
+ | 
 * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | 
+ | 
 * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | 
  | 
 */ | 
| 42 | 
  | 
  | 
| 43 | 
  | 
/** | 
| 48 | 
  | 
 */ | 
| 49 | 
  | 
#ifndef MATH_SQUAREMATRIX3_HPP | 
| 50 | 
  | 
#define  MATH_SQUAREMATRIX3_HPP | 
| 51 | 
< | 
 | 
| 51 | 
> | 
#include "config.h" | 
| 52 | 
> | 
#include <cmath> | 
| 53 | 
> | 
#include <vector> | 
| 54 | 
  | 
#include "Quaternion.hpp" | 
| 55 | 
  | 
#include "SquareMatrix.hpp" | 
| 56 | 
  | 
#include "Vector3.hpp" | 
| 57 | 
  | 
#include "utils/NumericConstant.hpp" | 
| 58 | 
< | 
namespace oopse { | 
| 58 | 
> | 
namespace OpenMD { | 
| 59 | 
  | 
 | 
| 60 | 
  | 
  template<typename Real> | 
| 61 | 
  | 
  class SquareMatrix3 : public SquareMatrix<Real, 3> { | 
| 112 | 
  | 
      return *this; | 
| 113 | 
  | 
    } | 
| 114 | 
  | 
 | 
| 115 | 
+ | 
     | 
| 116 | 
  | 
    /** | 
| 117 | 
  | 
     * Sets this matrix to a rotation matrix by three euler angles | 
| 118 | 
  | 
     * @ param euler | 
| 125 | 
  | 
     * Sets this matrix to a rotation matrix by three euler angles | 
| 126 | 
  | 
     * @param phi | 
| 127 | 
  | 
     * @param theta | 
| 128 | 
< | 
     * @psi theta | 
| 128 | 
> | 
     * @param psi | 
| 129 | 
  | 
     */ | 
| 130 | 
  | 
    void setupRotMat(Real phi, Real theta, Real psi) { | 
| 131 | 
  | 
      Real sphi, stheta, spsi; | 
| 172 | 
  | 
      *this = q.toRotationMatrix3(); | 
| 173 | 
  | 
    } | 
| 174 | 
  | 
 | 
| 175 | 
+ | 
    void setupSkewMat(Vector3<Real> v) { | 
| 176 | 
+ | 
        setupSkewMat(v[0], v[1], v[2]); | 
| 177 | 
+ | 
    } | 
| 178 | 
+ | 
 | 
| 179 | 
+ | 
    void setupSkewMat(Real v1, Real v2, Real v3) { | 
| 180 | 
+ | 
        this->data_[0][0] = 0; | 
| 181 | 
+ | 
        this->data_[0][1] = -v3; | 
| 182 | 
+ | 
        this->data_[0][2] = v2; | 
| 183 | 
+ | 
        this->data_[1][0] = v3; | 
| 184 | 
+ | 
        this->data_[1][1] = 0; | 
| 185 | 
+ | 
        this->data_[1][2] = -v1; | 
| 186 | 
+ | 
        this->data_[2][0] = -v2; | 
| 187 | 
+ | 
        this->data_[2][1] = v1; | 
| 188 | 
+ | 
        this->data_[2][2] = 0; | 
| 189 | 
+ | 
         | 
| 190 | 
+ | 
         | 
| 191 | 
+ | 
    } | 
| 192 | 
+ | 
 | 
| 193 | 
+ | 
 | 
| 194 | 
  | 
    /** | 
| 195 | 
  | 
     * Returns the quaternion from this rotation matrix | 
| 196 | 
  | 
     * @return the quaternion from this rotation matrix | 
| 202 | 
  | 
      Real ad1, ad2, ad3;     | 
| 203 | 
  | 
      t = this->data_[0][0] + this->data_[1][1] + this->data_[2][2] + 1.0; | 
| 204 | 
  | 
 | 
| 205 | 
< | 
      if( t > 0.0 ){ | 
| 205 | 
> | 
      if( t > NumericConstant::epsilon ){ | 
| 206 | 
  | 
 | 
| 207 | 
  | 
        s = 0.5 / sqrt( t ); | 
| 208 | 
  | 
        q[0] = 0.25 / s; | 
| 247 | 
  | 
     * @return the euler angles in a vector  | 
| 248 | 
  | 
     * @exception invalid rotation matrix | 
| 249 | 
  | 
     * We use so-called "x-convention", which is the most common definition.  | 
| 250 | 
< | 
     * In this convention, the rotation given by Euler angles (phi, theta, psi), where the first  | 
| 251 | 
< | 
     * rotation is by an angle phi about the z-axis, the second is by an angle   | 
| 252 | 
< | 
     * theta (0 <= theta <= 180)about the x-axis, and thethird is by an angle psi about the | 
| 253 | 
< | 
     * z-axis (again).  | 
| 250 | 
> | 
     * In this convention, the rotation given by Euler angles (phi, theta,  | 
| 251 | 
> | 
     * psi), where the first rotation is by an angle phi about the z-axis,  | 
| 252 | 
> | 
     * the second is by an angle theta (0 <= theta <= 180) about the x-axis,  | 
| 253 | 
> | 
     * and the third is by an angle psi about the z-axis (again).  | 
| 254 | 
  | 
     */             | 
| 255 | 
  | 
    Vector3<Real> toEulerAngles() { | 
| 256 | 
  | 
      Vector3<Real> myEuler; | 
| 262 | 
  | 
                 | 
| 263 | 
  | 
      // set the tolerance for Euler angles and rotation elements | 
| 264 | 
  | 
 | 
| 265 | 
< | 
      theta = acos(std::min(1.0, std::max(-1.0,this->data_[2][2]))); | 
| 265 | 
> | 
      theta = acos(std::min((RealType)1.0, std::max((RealType)-1.0,this->data_[2][2]))); | 
| 266 | 
  | 
      ctheta = this->data_[2][2];  | 
| 267 | 
  | 
      stheta = sqrt(1.0 - ctheta * ctheta); | 
| 268 | 
  | 
 | 
| 269 | 
< | 
      // when sin(theta) is close to 0, we need to consider singularity | 
| 270 | 
< | 
      // In this case, we can assign an arbitary value to phi (or psi), and then determine  | 
| 271 | 
< | 
      // the psi (or phi) or vice-versa. We'll assume that phi always gets the rotation, and psi is 0 | 
| 272 | 
< | 
      // in cases of singularity.   | 
| 269 | 
> | 
      // when sin(theta) is close to 0, we need to consider | 
| 270 | 
> | 
      // singularity In this case, we can assign an arbitary value to | 
| 271 | 
> | 
      // phi (or psi), and then determine the psi (or phi) or | 
| 272 | 
> | 
      // vice-versa. We'll assume that phi always gets the rotation, | 
| 273 | 
> | 
      // and psi is 0 in cases of singularity. | 
| 274 | 
  | 
      // we use atan2 instead of atan, since atan2 will give us -Pi to Pi.  | 
| 275 | 
< | 
      // Since 0 <= theta <= 180, sin(theta) will be always non-negative. Therefore, it never | 
| 276 | 
< | 
      // change the sign of both of the parameters passed to atan2. | 
| 275 | 
> | 
      // Since 0 <= theta <= 180, sin(theta) will be always | 
| 276 | 
> | 
      // non-negative. Therefore, it will never change the sign of both of | 
| 277 | 
> | 
      // the parameters passed to atan2. | 
| 278 | 
  | 
 | 
| 279 | 
< | 
      if (fabs(stheta) <= oopse::epsilon){ | 
| 279 | 
> | 
      if (fabs(stheta) < 1e-6){ | 
| 280 | 
  | 
        psi = 0.0; | 
| 281 | 
  | 
        phi = atan2(-this->data_[1][0], this->data_[0][0]);   | 
| 282 | 
  | 
      } | 
| 288 | 
  | 
 | 
| 289 | 
  | 
      //wrap phi and psi, make sure they are in the range from 0 to 2*Pi | 
| 290 | 
  | 
      if (phi < 0) | 
| 291 | 
< | 
        phi += M_PI; | 
| 291 | 
> | 
        phi += 2.0 * M_PI; | 
| 292 | 
  | 
 | 
| 293 | 
  | 
      if (psi < 0) | 
| 294 | 
< | 
        psi += M_PI; | 
| 294 | 
> | 
        psi += 2.0 * M_PI; | 
| 295 | 
  | 
 | 
| 296 | 
  | 
      myEuler[0] = phi; | 
| 297 | 
  | 
      myEuler[1] = theta; | 
| 323 | 
  | 
     */ | 
| 324 | 
  | 
    SquareMatrix3<Real>  inverse() const { | 
| 325 | 
  | 
      SquareMatrix3<Real> m; | 
| 326 | 
< | 
      double det = determinant(); | 
| 327 | 
< | 
      if (fabs(det) <= oopse::epsilon) { | 
| 326 | 
> | 
      RealType det = determinant(); | 
| 327 | 
> | 
      if (fabs(det) <= OpenMD::epsilon) { | 
| 328 | 
  | 
        //"The method was called on a matrix with |determinant| <= 1e-6.", | 
| 329 | 
  | 
        //"This is a runtime or a programming error in your application."); | 
| 330 | 
< | 
      } | 
| 330 | 
> | 
        std::vector<int> zeroDiagElementIndex; | 
| 331 | 
> | 
        for (int i =0; i < 3; ++i) { | 
| 332 | 
> | 
            if (fabs(this->data_[i][i]) <= OpenMD::epsilon) { | 
| 333 | 
> | 
                zeroDiagElementIndex.push_back(i); | 
| 334 | 
> | 
            } | 
| 335 | 
> | 
        } | 
| 336 | 
  | 
 | 
| 337 | 
< | 
      m(0, 0) = this->data_[1][1]*this->data_[2][2] - this->data_[1][2]*this->data_[2][1]; | 
| 338 | 
< | 
      m(1, 0) = this->data_[1][2]*this->data_[2][0] - this->data_[1][0]*this->data_[2][2]; | 
| 339 | 
< | 
      m(2, 0) = this->data_[1][0]*this->data_[2][1] - this->data_[1][1]*this->data_[2][0]; | 
| 340 | 
< | 
      m(0, 1) = this->data_[2][1]*this->data_[0][2] - this->data_[2][2]*this->data_[0][1]; | 
| 311 | 
< | 
      m(1, 1) = this->data_[2][2]*this->data_[0][0] - this->data_[2][0]*this->data_[0][2]; | 
| 312 | 
< | 
      m(2, 1) = this->data_[2][0]*this->data_[0][1] - this->data_[2][1]*this->data_[0][0]; | 
| 313 | 
< | 
      m(0, 2) = this->data_[0][1]*this->data_[1][2] - this->data_[0][2]*this->data_[1][1]; | 
| 314 | 
< | 
      m(1, 2) = this->data_[0][2]*this->data_[1][0] - this->data_[0][0]*this->data_[1][2]; | 
| 315 | 
< | 
      m(2, 2) = this->data_[0][0]*this->data_[1][1] - this->data_[0][1]*this->data_[1][0]; | 
| 337 | 
> | 
        if (zeroDiagElementIndex.size() == 2) { | 
| 338 | 
> | 
            int index = zeroDiagElementIndex[0]; | 
| 339 | 
> | 
            m(index, index) = 1.0 / this->data_[index][index]; | 
| 340 | 
> | 
        }else if (zeroDiagElementIndex.size() == 1) { | 
| 341 | 
  | 
 | 
| 342 | 
< | 
      m /= det; | 
| 342 | 
> | 
            int a = (zeroDiagElementIndex[0] + 1) % 3; | 
| 343 | 
> | 
            int b = (zeroDiagElementIndex[0] + 2) %3; | 
| 344 | 
> | 
            RealType denom = this->data_[a][a] * this->data_[b][b] - this->data_[b][a]*this->data_[a][b]; | 
| 345 | 
> | 
            m(a, a) = this->data_[b][b] /denom; | 
| 346 | 
> | 
            m(b, a) = -this->data_[b][a]/denom; | 
| 347 | 
> | 
 | 
| 348 | 
> | 
            m(a,b) = -this->data_[a][b]/denom; | 
| 349 | 
> | 
            m(b, b) = this->data_[a][a]/denom; | 
| 350 | 
> | 
                 | 
| 351 | 
> | 
        } | 
| 352 | 
> | 
       | 
| 353 | 
> | 
/* | 
| 354 | 
> | 
        for(std::vector<int>::iterator iter = zeroDiagElementIndex.begin(); iter != zeroDiagElementIndex.end() ++iter) { | 
| 355 | 
> | 
            if (this->data_[*iter][0] > OpenMD::epsilon || this->data_[*iter][1] ||this->data_[*iter][2] || | 
| 356 | 
> | 
                this->data_[0][*iter] > OpenMD::epsilon || this->data_[1][*iter] ||this->data_[2][*iter] ) { | 
| 357 | 
> | 
                std::cout << "can not inverse matrix" << std::endl; | 
| 358 | 
> | 
            } | 
| 359 | 
> | 
        } | 
| 360 | 
> | 
*/ | 
| 361 | 
> | 
      } else { | 
| 362 | 
> | 
 | 
| 363 | 
> | 
          m(0, 0) = this->data_[1][1]*this->data_[2][2] - this->data_[1][2]*this->data_[2][1]; | 
| 364 | 
> | 
          m(1, 0) = this->data_[1][2]*this->data_[2][0] - this->data_[1][0]*this->data_[2][2]; | 
| 365 | 
> | 
          m(2, 0) = this->data_[1][0]*this->data_[2][1] - this->data_[1][1]*this->data_[2][0]; | 
| 366 | 
> | 
          m(0, 1) = this->data_[2][1]*this->data_[0][2] - this->data_[2][2]*this->data_[0][1]; | 
| 367 | 
> | 
          m(1, 1) = this->data_[2][2]*this->data_[0][0] - this->data_[2][0]*this->data_[0][2]; | 
| 368 | 
> | 
          m(2, 1) = this->data_[2][0]*this->data_[0][1] - this->data_[2][1]*this->data_[0][0]; | 
| 369 | 
> | 
          m(0, 2) = this->data_[0][1]*this->data_[1][2] - this->data_[0][2]*this->data_[1][1]; | 
| 370 | 
> | 
          m(1, 2) = this->data_[0][2]*this->data_[1][0] - this->data_[0][0]*this->data_[1][2]; | 
| 371 | 
> | 
          m(2, 2) = this->data_[0][0]*this->data_[1][1] - this->data_[0][1]*this->data_[1][0]; | 
| 372 | 
> | 
 | 
| 373 | 
> | 
          m /= det; | 
| 374 | 
> | 
        } | 
| 375 | 
  | 
      return m; | 
| 376 | 
  | 
    } | 
| 377 | 
+ | 
 | 
| 378 | 
+ | 
    SquareMatrix3<Real> transpose() const{ | 
| 379 | 
+ | 
      SquareMatrix3<Real> result; | 
| 380 | 
+ | 
                 | 
| 381 | 
+ | 
      for (unsigned int i = 0; i < 3; i++) | 
| 382 | 
+ | 
        for (unsigned int j = 0; j < 3; j++)               | 
| 383 | 
+ | 
          result(j, i) = this->data_[i][j]; | 
| 384 | 
+ | 
 | 
| 385 | 
+ | 
      return result; | 
| 386 | 
+ | 
    } | 
| 387 | 
  | 
    /** | 
| 388 | 
  | 
     * Extract the eigenvalues and eigenvectors from a 3x3 matrix. | 
| 389 | 
  | 
     * The eigenvectors (the columns of V) will be normalized.  | 
| 420 | 
  | 
    Vector3<Real> v_maxI, v_k, v_j; | 
| 421 | 
  | 
 | 
| 422 | 
  | 
    // diagonalize using Jacobi | 
| 423 | 
< | 
    jacobi(a, w, v); | 
| 423 | 
> | 
    SquareMatrix3<Real>::jacobi(a, w, v); | 
| 424 | 
  | 
    // if all the eigenvalues are the same, return identity matrix | 
| 425 | 
  | 
    if (w[0] == w[1] && w[0] == w[2] ) { | 
| 426 | 
  | 
      v = SquareMatrix3<Real>::identity(); | 
| 566 | 
  | 
  } | 
| 567 | 
  | 
 | 
| 568 | 
  | 
     | 
| 569 | 
< | 
  typedef SquareMatrix3<double> Mat3x3d; | 
| 570 | 
< | 
  typedef SquareMatrix3<double> RotMat3x3d; | 
| 569 | 
> | 
  typedef SquareMatrix3<RealType> Mat3x3d; | 
| 570 | 
> | 
  typedef SquareMatrix3<RealType> RotMat3x3d; | 
| 571 | 
  | 
 | 
| 572 | 
< | 
} //namespace oopse | 
| 572 | 
> | 
} //namespace OpenMD | 
| 573 | 
  | 
#endif // MATH_SQUAREMATRIX_HPP | 
| 574 | 
  | 
 |