# | Line 29 | Line 29 | |
---|---|---|
29 | * @date 10/11/2004 | |
30 | * @version 1.0 | |
31 | */ | |
32 | < | #ifndef MATH_SQUAREMATRIX#_HPP |
33 | < | #define MATH_SQUAREMATRIX#_HPP |
32 | > | #ifndef MATH_SQUAREMATRIX3_HPP |
33 | > | #define MATH_SQUAREMATRIX3_HPP |
34 | ||
35 | + | #include "Quaternion.hpp" |
36 | #include "SquareMatrix.hpp" | |
37 | + | #include "Vector3.hpp" |
38 | + | |
39 | namespace oopse { | |
40 | ||
41 | template<typename Real> | |
# | Line 47 | Line 50 | namespace oopse { | |
50 | SquareMatrix3(const SquareMatrix<Real, 3>& m) : SquareMatrix<Real, 3>(m) { | |
51 | } | |
52 | ||
53 | + | SquareMatrix3( const Vector3<Real>& eulerAngles) { |
54 | + | setupRotMat(eulerAngles); |
55 | + | } |
56 | + | |
57 | + | SquareMatrix3(Real phi, Real theta, Real psi) { |
58 | + | setupRotMat(phi, theta, psi); |
59 | + | } |
60 | + | |
61 | + | SquareMatrix3(const Quaternion<Real>& q) { |
62 | + | *this = q.toRotationMatrix3(); |
63 | + | } |
64 | + | |
65 | + | SquareMatrix3(Real w, Real x, Real y, Real z) { |
66 | + | Quaternion<Real> q(w, x, y, z); |
67 | + | *this = q.toRotationMatrix3(); |
68 | + | } |
69 | + | |
70 | /** copy assignment operator */ | |
71 | SquareMatrix3<Real>& operator =(const SquareMatrix<Real, 3>& m) { | |
72 | if (this == &m) | |
# | Line 58 | Line 78 | namespace oopse { | |
78 | * Sets this matrix to a rotation matrix by three euler angles | |
79 | * @ param euler | |
80 | */ | |
81 | < | void setupRotMat(const Vector3d& euler); |
81 | > | void setupRotMat(const Vector3<Real>& eulerAngles) { |
82 | > | setupRotMat(eulerAngles[0], eulerAngles[1], eulerAngles[2]); |
83 | > | } |
84 | ||
85 | /** | |
86 | * Sets this matrix to a rotation matrix by three euler angles | |
# | Line 66 | Line 88 | namespace oopse { | |
88 | * @param theta | |
89 | * @psi theta | |
90 | */ | |
91 | < | void setupRotMat(double phi, double theta, double psi); |
91 | > | void setupRotMat(Real phi, Real theta, Real psi) { |
92 | > | Real sphi, stheta, spsi; |
93 | > | Real cphi, ctheta, cpsi; |
94 | ||
95 | + | sphi = sin(phi); |
96 | + | stheta = sin(theta); |
97 | + | spsi = sin(psi); |
98 | + | cphi = cos(phi); |
99 | + | ctheta = cos(theta); |
100 | + | cpsi = cos(psi); |
101 | ||
102 | + | data_[0][0] = cpsi * cphi - ctheta * sphi * spsi; |
103 | + | data_[0][1] = cpsi * sphi + ctheta * cphi * spsi; |
104 | + | data_[0][2] = spsi * stheta; |
105 | + | |
106 | + | data_[1][0] = -spsi * ctheta - ctheta * sphi * cpsi; |
107 | + | data_[1][1] = -spsi * stheta + ctheta * cphi * cpsi; |
108 | + | data_[1][2] = cpsi * stheta; |
109 | + | |
110 | + | data_[2][0] = stheta * sphi; |
111 | + | data_[2][1] = -stheta * cphi; |
112 | + | data_[2][2] = ctheta; |
113 | + | } |
114 | + | |
115 | + | |
116 | /** | |
117 | * Sets this matrix to a rotation matrix by quaternion | |
118 | * @param quat | |
119 | */ | |
120 | < | void setupRotMat(const Vector4d& quat); |
120 | > | void setupRotMat(const Quaternion<Real>& quat) { |
121 | > | *this = quat.toRotationMatrix3(); |
122 | > | } |
123 | ||
124 | /** | |
125 | * Sets this matrix to a rotation matrix by quaternion | |
126 | < | * @param q0 |
127 | < | * @param q1 |
128 | < | * @param q2 |
129 | < | * @parma q3 |
126 | > | * @param w the first element |
127 | > | * @param x the second element |
128 | > | * @param y the third element |
129 | > | * @parma z the fourth element |
130 | */ | |
131 | < | void setupRotMat(double q0, double q1, double q2, double q4); |
131 | > | void setupRotMat(Real w, Real x, Real y, Real z) { |
132 | > | Quaternion<Real> q(w, x, y, z); |
133 | > | *this = q.toRotationMatrix3(); |
134 | > | } |
135 | ||
136 | /** | |
137 | * Returns the quaternion from this rotation matrix | |
138 | * @return the quaternion from this rotation matrix | |
139 | * @exception invalid rotation matrix | |
140 | */ | |
141 | < | Quaternion rotMatToQuat(); |
141 | > | Quaternion<Real> toQuaternion() { |
142 | > | Quaternion<Real> q; |
143 | > | Real t, s; |
144 | > | Real ad1, ad2, ad3; |
145 | > | t = data_[0][0] + data_[1][1] + data_[2][2] + 1.0; |
146 | ||
147 | + | if( t > 0.0 ){ |
148 | + | |
149 | + | s = 0.5 / sqrt( t ); |
150 | + | q[0] = 0.25 / s; |
151 | + | q[1] = (data_[1][2] - data_[2][1]) * s; |
152 | + | q[2] = (data_[2][0] - data_[0][2]) * s; |
153 | + | q[3] = (data_[0][1] - data_[1][0]) * s; |
154 | + | } else { |
155 | + | |
156 | + | ad1 = fabs( data_[0][0] ); |
157 | + | ad2 = fabs( data_[1][1] ); |
158 | + | ad3 = fabs( data_[2][2] ); |
159 | + | |
160 | + | if( ad1 >= ad2 && ad1 >= ad3 ){ |
161 | + | |
162 | + | s = 2.0 * sqrt( 1.0 + data_[0][0] - data_[1][1] - data_[2][2] ); |
163 | + | q[0] = (data_[1][2] + data_[2][1]) / s; |
164 | + | q[1] = 0.5 / s; |
165 | + | q[2] = (data_[0][1] + data_[1][0]) / s; |
166 | + | q[3] = (data_[0][2] + data_[2][0]) / s; |
167 | + | } else if ( ad2 >= ad1 && ad2 >= ad3 ) { |
168 | + | s = sqrt( 1.0 + data_[1][1] - data_[0][0] - data_[2][2] ) * 2.0; |
169 | + | q[0] = (data_[0][2] + data_[2][0]) / s; |
170 | + | q[1] = (data_[0][1] + data_[1][0]) / s; |
171 | + | q[2] = 0.5 / s; |
172 | + | q[3] = (data_[1][2] + data_[2][1]) / s; |
173 | + | } else { |
174 | + | |
175 | + | s = sqrt( 1.0 + data_[2][2] - data_[0][0] - data_[1][1] ) * 2.0; |
176 | + | q[0] = (data_[0][1] + data_[1][0]) / s; |
177 | + | q[1] = (data_[0][2] + data_[2][0]) / s; |
178 | + | q[2] = (data_[1][2] + data_[2][1]) / s; |
179 | + | q[3] = 0.5 / s; |
180 | + | } |
181 | + | } |
182 | + | |
183 | + | return q; |
184 | + | |
185 | + | } |
186 | + | |
187 | /** | |
188 | * Returns the euler angles from this rotation matrix | |
189 | < | * @return the quaternion from this rotation matrix |
189 | > | * @return the euler angles in a vector |
190 | * @exception invalid rotation matrix | |
191 | + | * We use so-called "x-convention", which is the most common definition. |
192 | + | * In this convention, the rotation given by Euler angles (phi, theta, psi), where the first |
193 | + | * rotation is by an angle phi about the z-axis, the second is by an angle |
194 | + | * theta (0 <= theta <= 180)about the x-axis, and thethird is by an angle psi about the |
195 | + | * z-axis (again). |
196 | */ | |
197 | < | Vector3d rotMatToEuler(); |
197 | > | Vector3<Real> toEulerAngles() { |
198 | > | Vector<Real> myEuler; |
199 | > | Real phi,theta,psi,eps; |
200 | > | Real ctheta,stheta; |
201 | > | |
202 | > | // set the tolerance for Euler angles and rotation elements |
203 | > | |
204 | > | theta = acos(min(1.0,max(-1.0,data_[2][2]))); |
205 | > | ctheta = data_[2][2]; |
206 | > | stheta = sqrt(1.0 - ctheta * ctheta); |
207 | > | |
208 | > | // when sin(theta) is close to 0, we need to consider singularity |
209 | > | // In this case, we can assign an arbitary value to phi (or psi), and then determine |
210 | > | // the psi (or phi) or vice-versa. We'll assume that phi always gets the rotation, and psi is 0 |
211 | > | // in cases of singularity. |
212 | > | // we use atan2 instead of atan, since atan2 will give us -Pi to Pi. |
213 | > | // Since 0 <= theta <= 180, sin(theta) will be always non-negative. Therefore, it never |
214 | > | // change the sign of both of the parameters passed to atan2. |
215 | > | |
216 | > | if (fabs(stheta) <= oopse::epsilon){ |
217 | > | psi = 0.0; |
218 | > | phi = atan2(-data_[1][0], data_[0][0]); |
219 | > | } |
220 | > | // we only have one unique solution |
221 | > | else{ |
222 | > | phi = atan2(data_[2][0], -data_[2][1]); |
223 | > | psi = atan2(data_[0][2], data_[1][2]); |
224 | > | } |
225 | > | |
226 | > | //wrap phi and psi, make sure they are in the range from 0 to 2*Pi |
227 | > | if (phi < 0) |
228 | > | phi += M_PI; |
229 | > | |
230 | > | if (psi < 0) |
231 | > | psi += M_PI; |
232 | > | |
233 | > | myEuler[0] = phi; |
234 | > | myEuler[1] = theta; |
235 | > | myEuler[2] = psi; |
236 | > | |
237 | > | return myEuler; |
238 | > | } |
239 | ||
240 | /** | |
241 | * Sets the value of this matrix to the inversion of itself. | |
242 | * @note since simple algorithm can be applied to inverse the 3 by 3 matrix, we hide the | |
243 | * implementation of inverse in SquareMatrix class | |
244 | */ | |
245 | < | void inverse(); |
245 | > | void inverse() { |
246 | ||
247 | < | void diagonalize(); |
247 | > | } |
248 | ||
249 | < | } |
249 | > | void diagonalize() { |
250 | ||
251 | + | } |
252 | }; | |
253 | ||
254 | < | } |
255 | < | #endif // MATH_SQUAREMATRIX#_HPP |
254 | > | typedef SquareMatrix3<double> Mat3x3d; |
255 | > | typedef SquareMatrix3<double> RotMat3x3d; |
256 | > | |
257 | > | } //namespace oopse |
258 | > | #endif // MATH_SQUAREMATRIX_HPP |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |