| 1 |  | /* | 
| 2 | < | * Copyright (C) 2000-2004  Object Oriented Parallel Simulation Engine (OOPSE) project | 
| 3 | < | * | 
| 4 | < | * Contact: oopse@oopse.org | 
| 5 | < | * | 
| 6 | < | * This program is free software; you can redistribute it and/or | 
| 7 | < | * modify it under the terms of the GNU Lesser General Public License | 
| 8 | < | * as published by the Free Software Foundation; either version 2.1 | 
| 9 | < | * of the License, or (at your option) any later version. | 
| 10 | < | * All we ask is that proper credit is given for our work, which includes | 
| 11 | < | * - but is not limited to - adding the above copyright notice to the beginning | 
| 12 | < | * of your source code files, and to any copyright notice that you may distribute | 
| 13 | < | * with programs based on this work. | 
| 14 | < | * | 
| 15 | < | * This program is distributed in the hope that it will be useful, | 
| 16 | < | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 17 | < | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| 18 | < | * GNU Lesser General Public License for more details. | 
| 19 | < | * | 
| 20 | < | * You should have received a copy of the GNU Lesser General Public License | 
| 21 | < | * along with this program; if not, write to the Free Software | 
| 22 | < | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA. | 
| 2 | > | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 |  | * | 
| 4 | + | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | + | * non-exclusive, royalty free, license to use, modify and | 
| 6 | + | * redistribute this software in source and binary code form, provided | 
| 7 | + | * that the following conditions are met: | 
| 8 | + | * | 
| 9 | + | * 1. Redistributions of source code must retain the above copyright | 
| 10 | + | *    notice, this list of conditions and the following disclaimer. | 
| 11 | + | * | 
| 12 | + | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | + | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | + | *    documentation and/or other materials provided with the | 
| 15 | + | *    distribution. | 
| 16 | + | * | 
| 17 | + | * This software is provided "AS IS," without a warranty of any | 
| 18 | + | * kind. All express or implied conditions, representations and | 
| 19 | + | * warranties, including any implied warranty of merchantability, | 
| 20 | + | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | + | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | + | * be liable for any damages suffered by licensee as a result of | 
| 23 | + | * using, modifying or distributing the software or its | 
| 24 | + | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | + | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | + | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | + | * damages, however caused and regardless of the theory of liability, | 
| 28 | + | * arising out of the use of or inability to use software, even if the | 
| 29 | + | * University of Notre Dame has been advised of the possibility of | 
| 30 | + | * such damages. | 
| 31 | + | * | 
| 32 | + | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | + | * research, please cite the appropriate papers when you publish your | 
| 34 | + | * work.  Good starting points are: | 
| 35 | + | * | 
| 36 | + | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | + | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | + | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). | 
| 39 | + | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | + | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 |  | */ | 
| 42 | < |  | 
| 42 | > |  | 
| 43 |  | /** | 
| 44 |  | * @file SquareMatrix3.hpp | 
| 45 |  | * @author Teng Lin | 
| 48 |  | */ | 
| 49 |  | #ifndef MATH_SQUAREMATRIX3_HPP | 
| 50 |  | #define  MATH_SQUAREMATRIX3_HPP | 
| 51 | < |  | 
| 51 | > | #include "config.h" | 
| 52 | > | #include <cmath> | 
| 53 | > | #include <vector> | 
| 54 |  | #include "Quaternion.hpp" | 
| 55 |  | #include "SquareMatrix.hpp" | 
| 56 |  | #include "Vector3.hpp" | 
| 57 | + | #include "utils/NumericConstant.hpp" | 
| 58 | + | namespace OpenMD { | 
| 59 |  |  | 
| 60 | < | namespace oopse { | 
| 60 | > | template<typename Real> | 
| 61 | > | class SquareMatrix3 : public SquareMatrix<Real, 3> { | 
| 62 | > | public: | 
| 63 |  |  | 
| 64 | < | template<typename Real> | 
| 65 | < | class SquareMatrix3 : public SquareMatrix<Real, 3> { | 
| 43 | < | public: | 
| 64 | > | typedef Real ElemType; | 
| 65 | > | typedef Real* ElemPoinerType; | 
| 66 |  |  | 
| 67 | < | /** default constructor */ | 
| 68 | < | SquareMatrix3() : SquareMatrix<Real, 3>() { | 
| 69 | < | } | 
| 67 | > | /** default constructor */ | 
| 68 | > | SquareMatrix3() : SquareMatrix<Real, 3>() { | 
| 69 | > | } | 
| 70 |  |  | 
| 71 | < | /** copy  constructor */ | 
| 72 | < | SquareMatrix3(const SquareMatrix<Real, 3>& m)  : SquareMatrix<Real, 3>(m) { | 
| 73 | < | } | 
| 71 | > | /** Constructs and initializes every element of this matrix to a scalar */ | 
| 72 | > | SquareMatrix3(Real s) : SquareMatrix<Real,3>(s){ | 
| 73 | > | } | 
| 74 |  |  | 
| 75 | < | SquareMatrix3( const Vector3<Real>& eulerAngles) { | 
| 76 | < | setupRotMat(eulerAngles); | 
| 77 | < | } | 
| 56 | < |  | 
| 57 | < | SquareMatrix3(Real phi, Real theta, Real psi) { | 
| 58 | < | setupRotMat(phi, theta, psi); | 
| 59 | < | } | 
| 75 | > | /** Constructs and initializes from an array */ | 
| 76 | > | SquareMatrix3(Real* array) : SquareMatrix<Real,3>(array){ | 
| 77 | > | } | 
| 78 |  |  | 
| 61 | – | SquareMatrix3(const Quaternion<Real>& q) { | 
| 62 | – | *this = q.toRotationMatrix3(); | 
| 63 | – | } | 
| 79 |  |  | 
| 80 | < | SquareMatrix3(Real w, Real x, Real y, Real z) { | 
| 81 | < | Quaternion<Real> q(w, x, y, z); | 
| 82 | < | *this = q.toRotationMatrix3(); | 
| 68 | < | } | 
| 80 | > | /** copy  constructor */ | 
| 81 | > | SquareMatrix3(const SquareMatrix<Real, 3>& m)  : SquareMatrix<Real, 3>(m) { | 
| 82 | > | } | 
| 83 |  |  | 
| 84 | < | /** copy assignment operator */ | 
| 85 | < | SquareMatrix3<Real>& operator =(const SquareMatrix<Real, 3>& m) { | 
| 86 | < | if (this == &m) | 
| 87 | < | return *this; | 
| 88 | < | SquareMatrix<Real, 3>::operator=(m); | 
| 89 | < | } | 
| 84 | > | SquareMatrix3( const Vector3<Real>& eulerAngles) { | 
| 85 | > | setupRotMat(eulerAngles); | 
| 86 | > | } | 
| 87 | > |  | 
| 88 | > | SquareMatrix3(Real phi, Real theta, Real psi) { | 
| 89 | > | setupRotMat(phi, theta, psi); | 
| 90 | > | } | 
| 91 |  |  | 
| 92 | < | /** | 
| 93 | < | * Sets this matrix to a rotation matrix by three euler angles | 
| 79 | < | * @ param euler | 
| 80 | < | */ | 
| 81 | < | void setupRotMat(const Vector3<Real>& eulerAngles) { | 
| 82 | < | setupRotMat(eulerAngles[0], eulerAngles[1], eulerAngles[2]); | 
| 83 | < | } | 
| 92 | > | SquareMatrix3(const Quaternion<Real>& q) { | 
| 93 | > | setupRotMat(q); | 
| 94 |  |  | 
| 95 | < | /** | 
| 86 | < | * Sets this matrix to a rotation matrix by three euler angles | 
| 87 | < | * @param phi | 
| 88 | < | * @param theta | 
| 89 | < | * @psi theta | 
| 90 | < | */ | 
| 91 | < | void setupRotMat(Real phi, Real theta, Real psi) { | 
| 92 | < | Real sphi, stheta, spsi; | 
| 93 | < | Real cphi, ctheta, cpsi; | 
| 95 | > | } | 
| 96 |  |  | 
| 97 | < | sphi = sin(phi); | 
| 98 | < | stheta = sin(theta); | 
| 99 | < | spsi = sin(psi); | 
| 100 | < | cphi = cos(phi); | 
| 101 | < | ctheta = cos(theta); | 
| 102 | < | cpsi = cos(psi); | 
| 97 | > | SquareMatrix3(Real w, Real x, Real y, Real z) { | 
| 98 | > | setupRotMat(w, x, y, z); | 
| 99 | > | } | 
| 100 | > |  | 
| 101 | > | /** copy assignment operator */ | 
| 102 | > | SquareMatrix3<Real>& operator =(const SquareMatrix<Real, 3>& m) { | 
| 103 | > | if (this == &m) | 
| 104 | > | return *this; | 
| 105 | > | SquareMatrix<Real, 3>::operator=(m); | 
| 106 | > | return *this; | 
| 107 | > | } | 
| 108 |  |  | 
| 102 | – | data_[0][0] = cpsi * cphi - ctheta * sphi * spsi; | 
| 103 | – | data_[0][1] = cpsi * sphi + ctheta * cphi * spsi; | 
| 104 | – | data_[0][2] = spsi * stheta; | 
| 105 | – |  | 
| 106 | – | data_[1][0] = -spsi * ctheta - ctheta * sphi * cpsi; | 
| 107 | – | data_[1][1] = -spsi * stheta + ctheta * cphi * cpsi; | 
| 108 | – | data_[1][2] = cpsi * stheta; | 
| 109 |  |  | 
| 110 | < | data_[2][0] = stheta * sphi; | 
| 111 | < | data_[2][1] = -stheta * cphi; | 
| 112 | < | data_[2][2] = ctheta; | 
| 113 | < | } | 
| 110 | > | SquareMatrix3<Real>& operator =(const Quaternion<Real>& q) { | 
| 111 | > | this->setupRotMat(q); | 
| 112 | > | return *this; | 
| 113 | > | } | 
| 114 |  |  | 
| 115 | + |  | 
| 116 | + | /** | 
| 117 | + | * Sets this matrix to a rotation matrix by three euler angles | 
| 118 | + | * @ param euler | 
| 119 | + | */ | 
| 120 | + | void setupRotMat(const Vector3<Real>& eulerAngles) { | 
| 121 | + | setupRotMat(eulerAngles[0], eulerAngles[1], eulerAngles[2]); | 
| 122 | + | } | 
| 123 |  |  | 
| 124 | < | /** | 
| 125 | < | * Sets this matrix to a rotation matrix by quaternion | 
| 126 | < | * @param quat | 
| 127 | < | */ | 
| 128 | < | void setupRotMat(const Quaternion<Real>& quat) { | 
| 129 | < | *this = quat.toRotationMatrix3(); | 
| 130 | < | } | 
| 124 | > | /** | 
| 125 | > | * Sets this matrix to a rotation matrix by three euler angles | 
| 126 | > | * @param phi | 
| 127 | > | * @param theta | 
| 128 | > | * @param psi | 
| 129 | > | */ | 
| 130 | > | void setupRotMat(Real phi, Real theta, Real psi) { | 
| 131 | > | Real sphi, stheta, spsi; | 
| 132 | > | Real cphi, ctheta, cpsi; | 
| 133 |  |  | 
| 134 | < | /** | 
| 135 | < | * Sets this matrix to a rotation matrix by quaternion | 
| 136 | < | * @param w the first element | 
| 137 | < | * @param x the second element | 
| 138 | < | * @param y the third element | 
| 139 | < | * @parma z the fourth element | 
| 130 | < | */ | 
| 131 | < | void setupRotMat(Real w, Real x, Real y, Real z) { | 
| 132 | < | Quaternion<Real> q(w, x, y, z); | 
| 133 | < | *this = q.toRotationMatrix3(); | 
| 134 | < | } | 
| 134 | > | sphi = sin(phi); | 
| 135 | > | stheta = sin(theta); | 
| 136 | > | spsi = sin(psi); | 
| 137 | > | cphi = cos(phi); | 
| 138 | > | ctheta = cos(theta); | 
| 139 | > | cpsi = cos(psi); | 
| 140 |  |  | 
| 141 | < | /** | 
| 142 | < | * Returns the quaternion from this rotation matrix | 
| 143 | < | * @return the quaternion from this rotation matrix | 
| 144 | < | * @exception invalid rotation matrix | 
| 145 | < | */ | 
| 146 | < | Quaternion<Real> toQuaternion() { | 
| 147 | < | Quaternion<Real> q; | 
| 143 | < | Real t, s; | 
| 144 | < | Real ad1, ad2, ad3; | 
| 145 | < | t = data_[0][0] + data_[1][1] + data_[2][2] + 1.0; | 
| 141 | > | this->data_[0][0] = cpsi * cphi - ctheta * sphi * spsi; | 
| 142 | > | this->data_[0][1] = cpsi * sphi + ctheta * cphi * spsi; | 
| 143 | > | this->data_[0][2] = spsi * stheta; | 
| 144 | > |  | 
| 145 | > | this->data_[1][0] = -spsi * ctheta - ctheta * sphi * cpsi; | 
| 146 | > | this->data_[1][1] = -spsi * stheta + ctheta * cphi * cpsi; | 
| 147 | > | this->data_[1][2] = cpsi * stheta; | 
| 148 |  |  | 
| 149 | < | if( t > 0.0 ){ | 
| 149 | > | this->data_[2][0] = stheta * sphi; | 
| 150 | > | this->data_[2][1] = -stheta * cphi; | 
| 151 | > | this->data_[2][2] = ctheta; | 
| 152 | > | } | 
| 153 |  |  | 
| 149 | – | s = 0.5 / sqrt( t ); | 
| 150 | – | q[0] = 0.25 / s; | 
| 151 | – | q[1] = (data_[1][2] - data_[2][1]) * s; | 
| 152 | – | q[2] = (data_[2][0] - data_[0][2]) * s; | 
| 153 | – | q[3] = (data_[0][1] - data_[1][0]) * s; | 
| 154 | – | } else { | 
| 154 |  |  | 
| 155 | < | ad1 = fabs( data_[0][0] ); | 
| 156 | < | ad2 = fabs( data_[1][1] ); | 
| 157 | < | ad3 = fabs( data_[2][2] ); | 
| 155 | > | /** | 
| 156 | > | * Sets this matrix to a rotation matrix by quaternion | 
| 157 | > | * @param quat | 
| 158 | > | */ | 
| 159 | > | void setupRotMat(const Quaternion<Real>& quat) { | 
| 160 | > | setupRotMat(quat.w(), quat.x(), quat.y(), quat.z()); | 
| 161 | > | } | 
| 162 |  |  | 
| 163 | < | if( ad1 >= ad2 && ad1 >= ad3 ){ | 
| 163 | > | /** | 
| 164 | > | * Sets this matrix to a rotation matrix by quaternion | 
| 165 | > | * @param w the first element | 
| 166 | > | * @param x the second element | 
| 167 | > | * @param y the third element | 
| 168 | > | * @param z the fourth element | 
| 169 | > | */ | 
| 170 | > | void setupRotMat(Real w, Real x, Real y, Real z) { | 
| 171 | > | Quaternion<Real> q(w, x, y, z); | 
| 172 | > | *this = q.toRotationMatrix3(); | 
| 173 | > | } | 
| 174 |  |  | 
| 175 | < | s = 2.0 * sqrt( 1.0 + data_[0][0] - data_[1][1] - data_[2][2] ); | 
| 176 | < | q[0] = (data_[1][2] + data_[2][1]) / s; | 
| 177 | < | q[1] = 0.5 / s; | 
| 165 | < | q[2] = (data_[0][1] + data_[1][0]) / s; | 
| 166 | < | q[3] = (data_[0][2] + data_[2][0]) / s; | 
| 167 | < | } else if ( ad2 >= ad1 && ad2 >= ad3 ) { | 
| 168 | < | s = sqrt( 1.0 + data_[1][1] - data_[0][0] - data_[2][2] ) * 2.0; | 
| 169 | < | q[0] = (data_[0][2] + data_[2][0]) / s; | 
| 170 | < | q[1] = (data_[0][1] + data_[1][0]) / s; | 
| 171 | < | q[2] = 0.5 / s; | 
| 172 | < | q[3] = (data_[1][2] + data_[2][1]) / s; | 
| 173 | < | } else { | 
| 175 | > | void setupSkewMat(Vector3<Real> v) { | 
| 176 | > | setupSkewMat(v[0], v[1], v[2]); | 
| 177 | > | } | 
| 178 |  |  | 
| 179 | < | s = sqrt( 1.0 + data_[2][2] - data_[0][0] - data_[1][1] ) * 2.0; | 
| 180 | < | q[0] = (data_[0][1] + data_[1][0]) / s; | 
| 181 | < | q[1] = (data_[0][2] + data_[2][0]) / s; | 
| 182 | < | q[2] = (data_[1][2] + data_[2][1]) / s; | 
| 183 | < | q[3] = 0.5 / s; | 
| 184 | < | } | 
| 185 | < | } | 
| 179 | > | void setupSkewMat(Real v1, Real v2, Real v3) { | 
| 180 | > | this->data_[0][0] = 0; | 
| 181 | > | this->data_[0][1] = -v3; | 
| 182 | > | this->data_[0][2] = v2; | 
| 183 | > | this->data_[1][0] = v3; | 
| 184 | > | this->data_[1][1] = 0; | 
| 185 | > | this->data_[1][2] = -v1; | 
| 186 | > | this->data_[2][0] = -v2; | 
| 187 | > | this->data_[2][1] = v1; | 
| 188 | > | this->data_[2][2] = 0; | 
| 189 | > |  | 
| 190 | > |  | 
| 191 | > | } | 
| 192 |  |  | 
| 183 | – | return q; | 
| 184 | – |  | 
| 185 | – | } | 
| 193 |  |  | 
| 194 | < | /** | 
| 195 | < | * Returns the euler angles from this rotation matrix | 
| 196 | < | * @return the euler angles in a vector | 
| 197 | < | * @exception invalid rotation matrix | 
| 198 | < | * We use so-called "x-convention", which is the most common definition. | 
| 199 | < | * In this convention, the rotation given by Euler angles (phi, theta, psi), where the first | 
| 200 | < | * rotation is by an angle phi about the z-axis, the second is by an angle | 
| 201 | < | * theta (0 <= theta <= 180)about the x-axis, and thethird is by an angle psi about the | 
| 202 | < | * z-axis (again). | 
| 203 | < | */ | 
| 197 | < | Vector3<Real> toEulerAngles() { | 
| 198 | < | Vector<Real> myEuler; | 
| 199 | < | Real phi,theta,psi,eps; | 
| 200 | < | Real ctheta,stheta; | 
| 201 | < |  | 
| 202 | < | // set the tolerance for Euler angles and rotation elements | 
| 194 | > | /** | 
| 195 | > | * Returns the quaternion from this rotation matrix | 
| 196 | > | * @return the quaternion from this rotation matrix | 
| 197 | > | * @exception invalid rotation matrix | 
| 198 | > | */ | 
| 199 | > | Quaternion<Real> toQuaternion() { | 
| 200 | > | Quaternion<Real> q; | 
| 201 | > | Real t, s; | 
| 202 | > | Real ad1, ad2, ad3; | 
| 203 | > | t = this->data_[0][0] + this->data_[1][1] + this->data_[2][2] + 1.0; | 
| 204 |  |  | 
| 205 | < | theta = acos(min(1.0,max(-1.0,data_[2][2]))); | 
| 205 | < | ctheta = data_[2][2]; | 
| 206 | < | stheta = sqrt(1.0 - ctheta * ctheta); | 
| 205 | > | if( t > NumericConstant::epsilon ){ | 
| 206 |  |  | 
| 207 | < | // when sin(theta) is close to 0, we need to consider singularity | 
| 208 | < | // In this case, we can assign an arbitary value to phi (or psi), and then determine | 
| 209 | < | // the psi (or phi) or vice-versa. We'll assume that phi always gets the rotation, and psi is 0 | 
| 210 | < | // in cases of singularity. | 
| 211 | < | // we use atan2 instead of atan, since atan2 will give us -Pi to Pi. | 
| 212 | < | // Since 0 <= theta <= 180, sin(theta) will be always non-negative. Therefore, it never | 
| 214 | < | // change the sign of both of the parameters passed to atan2. | 
| 207 | > | s = 0.5 / sqrt( t ); | 
| 208 | > | q[0] = 0.25 / s; | 
| 209 | > | q[1] = (this->data_[1][2] - this->data_[2][1]) * s; | 
| 210 | > | q[2] = (this->data_[2][0] - this->data_[0][2]) * s; | 
| 211 | > | q[3] = (this->data_[0][1] - this->data_[1][0]) * s; | 
| 212 | > | } else { | 
| 213 |  |  | 
| 214 | < | if (fabs(stheta) <= oopse::epsilon){ | 
| 215 | < | psi = 0.0; | 
| 216 | < | phi = atan2(-data_[1][0], data_[0][0]); | 
| 219 | < | } | 
| 220 | < | // we only have one unique solution | 
| 221 | < | else{ | 
| 222 | < | phi = atan2(data_[2][0], -data_[2][1]); | 
| 223 | < | psi = atan2(data_[0][2], data_[1][2]); | 
| 224 | < | } | 
| 214 | > | ad1 = this->data_[0][0]; | 
| 215 | > | ad2 = this->data_[1][1]; | 
| 216 | > | ad3 = this->data_[2][2]; | 
| 217 |  |  | 
| 218 | < | //wrap phi and psi, make sure they are in the range from 0 to 2*Pi | 
| 227 | < | if (phi < 0) | 
| 228 | < | phi += M_PI; | 
| 218 | > | if( ad1 >= ad2 && ad1 >= ad3 ){ | 
| 219 |  |  | 
| 220 | < | if (psi < 0) | 
| 221 | < | psi += M_PI; | 
| 222 | < |  | 
| 223 | < | myEuler[0] = phi; | 
| 224 | < | myEuler[1] = theta; | 
| 225 | < | myEuler[2] = psi; | 
| 220 | > | s = 0.5 / sqrt( 1.0 + this->data_[0][0] - this->data_[1][1] - this->data_[2][2] ); | 
| 221 | > | q[0] = (this->data_[1][2] - this->data_[2][1]) * s; | 
| 222 | > | q[1] = 0.25 / s; | 
| 223 | > | q[2] = (this->data_[0][1] + this->data_[1][0]) * s; | 
| 224 | > | q[3] = (this->data_[0][2] + this->data_[2][0]) * s; | 
| 225 | > | } else if ( ad2 >= ad1 && ad2 >= ad3 ) { | 
| 226 | > | s = 0.5 / sqrt( 1.0 + this->data_[1][1] - this->data_[0][0] - this->data_[2][2] ); | 
| 227 | > | q[0] = (this->data_[2][0] - this->data_[0][2] ) * s; | 
| 228 | > | q[1] = (this->data_[0][1] + this->data_[1][0]) * s; | 
| 229 | > | q[2] = 0.25 / s; | 
| 230 | > | q[3] = (this->data_[1][2] + this->data_[2][1]) * s; | 
| 231 | > | } else { | 
| 232 |  |  | 
| 233 | < | return myEuler; | 
| 234 | < | } | 
| 233 | > | s = 0.5 / sqrt( 1.0 + this->data_[2][2] - this->data_[0][0] - this->data_[1][1] ); | 
| 234 | > | q[0] = (this->data_[0][1] - this->data_[1][0]) * s; | 
| 235 | > | q[1] = (this->data_[0][2] + this->data_[2][0]) * s; | 
| 236 | > | q[2] = (this->data_[1][2] + this->data_[2][1]) * s; | 
| 237 | > | q[3] = 0.25 / s; | 
| 238 | > | } | 
| 239 | > | } | 
| 240 | > |  | 
| 241 | > | return q; | 
| 242 | > |  | 
| 243 | > | } | 
| 244 | > |  | 
| 245 | > | /** | 
| 246 | > | * Returns the euler angles from this rotation matrix | 
| 247 | > | * @return the euler angles in a vector | 
| 248 | > | * @exception invalid rotation matrix | 
| 249 | > | * We use so-called "x-convention", which is the most common definition. | 
| 250 | > | * In this convention, the rotation given by Euler angles (phi, theta, | 
| 251 | > | * psi), where the first rotation is by an angle phi about the z-axis, | 
| 252 | > | * the second is by an angle theta (0 <= theta <= 180) about the x-axis, | 
| 253 | > | * and the third is by an angle psi about the z-axis (again). | 
| 254 | > | */ | 
| 255 | > | Vector3<Real> toEulerAngles() { | 
| 256 | > | Vector3<Real> myEuler; | 
| 257 | > | Real phi; | 
| 258 | > | Real theta; | 
| 259 | > | Real psi; | 
| 260 | > | Real ctheta; | 
| 261 | > | Real stheta; | 
| 262 | > |  | 
| 263 | > | // set the tolerance for Euler angles and rotation elements | 
| 264 | > |  | 
| 265 | > | theta = acos(std::min((RealType)1.0, std::max((RealType)-1.0,this->data_[2][2]))); | 
| 266 | > | ctheta = this->data_[2][2]; | 
| 267 | > | stheta = sqrt(1.0 - ctheta * ctheta); | 
| 268 | > |  | 
| 269 | > | // when sin(theta) is close to 0, we need to consider | 
| 270 | > | // singularity In this case, we can assign an arbitary value to | 
| 271 | > | // phi (or psi), and then determine the psi (or phi) or | 
| 272 | > | // vice-versa. We'll assume that phi always gets the rotation, | 
| 273 | > | // and psi is 0 in cases of singularity. | 
| 274 | > | // we use atan2 instead of atan, since atan2 will give us -Pi to Pi. | 
| 275 | > | // Since 0 <= theta <= 180, sin(theta) will be always | 
| 276 | > | // non-negative. Therefore, it will never change the sign of both of | 
| 277 | > | // the parameters passed to atan2. | 
| 278 | > |  | 
| 279 | > | if (fabs(stheta) < 1e-6){ | 
| 280 | > | psi = 0.0; | 
| 281 | > | phi = atan2(-this->data_[1][0], this->data_[0][0]); | 
| 282 | > | } | 
| 283 | > | // we only have one unique solution | 
| 284 | > | else{ | 
| 285 | > | phi = atan2(this->data_[2][0], -this->data_[2][1]); | 
| 286 | > | psi = atan2(this->data_[0][2], this->data_[1][2]); | 
| 287 | > | } | 
| 288 | > |  | 
| 289 | > | //wrap phi and psi, make sure they are in the range from 0 to 2*Pi | 
| 290 | > | if (phi < 0) | 
| 291 | > | phi += 2.0 * M_PI; | 
| 292 | > |  | 
| 293 | > | if (psi < 0) | 
| 294 | > | psi += 2.0 * M_PI; | 
| 295 | > |  | 
| 296 | > | myEuler[0] = phi; | 
| 297 | > | myEuler[1] = theta; | 
| 298 | > | myEuler[2] = psi; | 
| 299 | > |  | 
| 300 | > | return myEuler; | 
| 301 | > | } | 
| 302 |  |  | 
| 303 | < | /** | 
| 304 | < | * Sets the value of this matrix to  the inversion of itself. | 
| 305 | < | * @note since simple algorithm can be applied to inverse the 3 by 3 matrix, we hide the | 
| 243 | < | * implementation of inverse in SquareMatrix class | 
| 244 | < | */ | 
| 245 | < | void  inverse() { | 
| 303 | > | /** Returns the determinant of this matrix. */ | 
| 304 | > | Real determinant() const { | 
| 305 | > | Real x,y,z; | 
| 306 |  |  | 
| 307 | + | x = this->data_[0][0] * (this->data_[1][1] * this->data_[2][2] - this->data_[1][2] * this->data_[2][1]); | 
| 308 | + | y = this->data_[0][1] * (this->data_[1][2] * this->data_[2][0] - this->data_[1][0] * this->data_[2][2]); | 
| 309 | + | z = this->data_[0][2] * (this->data_[1][0] * this->data_[2][1] - this->data_[1][1] * this->data_[2][0]); | 
| 310 | + |  | 
| 311 | + | return(x + y + z); | 
| 312 | + | } | 
| 313 | + |  | 
| 314 | + | /** Returns the trace of this matrix. */ | 
| 315 | + | Real trace() const { | 
| 316 | + | return this->data_[0][0] + this->data_[1][1] + this->data_[2][2]; | 
| 317 | + | } | 
| 318 | + |  | 
| 319 | + | /** | 
| 320 | + | * Sets the value of this matrix to  the inversion of itself. | 
| 321 | + | * @note since simple algorithm can be applied to inverse the 3 by 3 matrix, we hide the | 
| 322 | + | * implementation of inverse in SquareMatrix class | 
| 323 | + | */ | 
| 324 | + | SquareMatrix3<Real>  inverse() const { | 
| 325 | + | SquareMatrix3<Real> m; | 
| 326 | + | RealType det = determinant(); | 
| 327 | + | if (fabs(det) <= OpenMD::epsilon) { | 
| 328 | + | //"The method was called on a matrix with |determinant| <= 1e-6.", | 
| 329 | + | //"This is a runtime or a programming error in your application."); | 
| 330 | + | std::vector<int> zeroDiagElementIndex; | 
| 331 | + | for (int i =0; i < 3; ++i) { | 
| 332 | + | if (fabs(this->data_[i][i]) <= OpenMD::epsilon) { | 
| 333 | + | zeroDiagElementIndex.push_back(i); | 
| 334 |  | } | 
| 335 | + | } | 
| 336 |  |  | 
| 337 | < | void diagonalize() { | 
| 337 | > | if (zeroDiagElementIndex.size() == 2) { | 
| 338 | > | int index = zeroDiagElementIndex[0]; | 
| 339 | > | m(index, index) = 1.0 / this->data_[index][index]; | 
| 340 | > | }else if (zeroDiagElementIndex.size() == 1) { | 
| 341 |  |  | 
| 342 | + | int a = (zeroDiagElementIndex[0] + 1) % 3; | 
| 343 | + | int b = (zeroDiagElementIndex[0] + 2) %3; | 
| 344 | + | RealType denom = this->data_[a][a] * this->data_[b][b] - this->data_[b][a]*this->data_[a][b]; | 
| 345 | + | m(a, a) = this->data_[b][b] /denom; | 
| 346 | + | m(b, a) = -this->data_[b][a]/denom; | 
| 347 | + |  | 
| 348 | + | m(a,b) = -this->data_[a][b]/denom; | 
| 349 | + | m(b, b) = this->data_[a][a]/denom; | 
| 350 | + |  | 
| 351 | + | } | 
| 352 | + |  | 
| 353 | + | /* | 
| 354 | + | for(std::vector<int>::iterator iter = zeroDiagElementIndex.begin(); iter != zeroDiagElementIndex.end() ++iter) { | 
| 355 | + | if (this->data_[*iter][0] > OpenMD::epsilon || this->data_[*iter][1] ||this->data_[*iter][2] || | 
| 356 | + | this->data_[0][*iter] > OpenMD::epsilon || this->data_[1][*iter] ||this->data_[2][*iter] ) { | 
| 357 | + | std::cout << "can not inverse matrix" << std::endl; | 
| 358 |  | } | 
| 359 | < | }; | 
| 359 | > | } | 
| 360 | > | */ | 
| 361 | > | } else { | 
| 362 |  |  | 
| 363 | < | typedef SquareMatrix3<double> Mat3x3d; | 
| 364 | < | typedef SquareMatrix3<double> RotMat3x3d; | 
| 363 | > | m(0, 0) = this->data_[1][1]*this->data_[2][2] - this->data_[1][2]*this->data_[2][1]; | 
| 364 | > | m(1, 0) = this->data_[1][2]*this->data_[2][0] - this->data_[1][0]*this->data_[2][2]; | 
| 365 | > | m(2, 0) = this->data_[1][0]*this->data_[2][1] - this->data_[1][1]*this->data_[2][0]; | 
| 366 | > | m(0, 1) = this->data_[2][1]*this->data_[0][2] - this->data_[2][2]*this->data_[0][1]; | 
| 367 | > | m(1, 1) = this->data_[2][2]*this->data_[0][0] - this->data_[2][0]*this->data_[0][2]; | 
| 368 | > | m(2, 1) = this->data_[2][0]*this->data_[0][1] - this->data_[2][1]*this->data_[0][0]; | 
| 369 | > | m(0, 2) = this->data_[0][1]*this->data_[1][2] - this->data_[0][2]*this->data_[1][1]; | 
| 370 | > | m(1, 2) = this->data_[0][2]*this->data_[1][0] - this->data_[0][0]*this->data_[1][2]; | 
| 371 | > | m(2, 2) = this->data_[0][0]*this->data_[1][1] - this->data_[0][1]*this->data_[1][0]; | 
| 372 |  |  | 
| 373 | < | } //namespace oopse | 
| 373 | > | m /= det; | 
| 374 | > | } | 
| 375 | > | return m; | 
| 376 | > | } | 
| 377 | > |  | 
| 378 | > | SquareMatrix3<Real> transpose() const{ | 
| 379 | > | SquareMatrix3<Real> result; | 
| 380 | > |  | 
| 381 | > | for (unsigned int i = 0; i < 3; i++) | 
| 382 | > | for (unsigned int j = 0; j < 3; j++) | 
| 383 | > | result(j, i) = this->data_[i][j]; | 
| 384 | > |  | 
| 385 | > | return result; | 
| 386 | > | } | 
| 387 | > | /** | 
| 388 | > | * Extract the eigenvalues and eigenvectors from a 3x3 matrix. | 
| 389 | > | * The eigenvectors (the columns of V) will be normalized. | 
| 390 | > | * The eigenvectors are aligned optimally with the x, y, and z | 
| 391 | > | * axes respectively. | 
| 392 | > | * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is | 
| 393 | > | *     overwritten | 
| 394 | > | * @param w will contain the eigenvalues of the matrix On return of this function | 
| 395 | > | * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are | 
| 396 | > | *    normalized and mutually orthogonal. | 
| 397 | > | * @warning a will be overwritten | 
| 398 | > | */ | 
| 399 | > | static void diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w, SquareMatrix3<Real>& v); | 
| 400 | > | }; | 
| 401 | > | /*========================================================================= | 
| 402 | > |  | 
| 403 | > | Program:   Visualization Toolkit | 
| 404 | > | Module:    $RCSfile: SquareMatrix3.hpp,v $ | 
| 405 | > |  | 
| 406 | > | Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen | 
| 407 | > | All rights reserved. | 
| 408 | > | See Copyright.txt or http://www.kitware.com/Copyright.htm for details. | 
| 409 | > |  | 
| 410 | > | This software is distributed WITHOUT ANY WARRANTY; without even | 
| 411 | > | the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR | 
| 412 | > | PURPOSE.  See the above copyright notice for more information. | 
| 413 | > |  | 
| 414 | > | =========================================================================*/ | 
| 415 | > | template<typename Real> | 
| 416 | > | void SquareMatrix3<Real>::diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w, | 
| 417 | > | SquareMatrix3<Real>& v) { | 
| 418 | > | int i,j,k,maxI; | 
| 419 | > | Real tmp, maxVal; | 
| 420 | > | Vector3<Real> v_maxI, v_k, v_j; | 
| 421 | > |  | 
| 422 | > | // diagonalize using Jacobi | 
| 423 | > | SquareMatrix3<Real>::jacobi(a, w, v); | 
| 424 | > | // if all the eigenvalues are the same, return identity matrix | 
| 425 | > | if (w[0] == w[1] && w[0] == w[2] ) { | 
| 426 | > | v = SquareMatrix3<Real>::identity(); | 
| 427 | > | return; | 
| 428 | > | } | 
| 429 | > |  | 
| 430 | > | // transpose temporarily, it makes it easier to sort the eigenvectors | 
| 431 | > | v = v.transpose(); | 
| 432 | > |  | 
| 433 | > | // if two eigenvalues are the same, re-orthogonalize to optimally line | 
| 434 | > | // up the eigenvectors with the x, y, and z axes | 
| 435 | > | for (i = 0; i < 3; i++) { | 
| 436 | > | if (w((i+1)%3) == w((i+2)%3)) {// two eigenvalues are the same | 
| 437 | > | // find maximum element of the independant eigenvector | 
| 438 | > | maxVal = fabs(v(i, 0)); | 
| 439 | > | maxI = 0; | 
| 440 | > | for (j = 1; j < 3; j++) { | 
| 441 | > | if (maxVal < (tmp = fabs(v(i, j)))){ | 
| 442 | > | maxVal = tmp; | 
| 443 | > | maxI = j; | 
| 444 | > | } | 
| 445 | > | } | 
| 446 | > |  | 
| 447 | > | // swap the eigenvector into its proper position | 
| 448 | > | if (maxI != i) { | 
| 449 | > | tmp = w(maxI); | 
| 450 | > | w(maxI) = w(i); | 
| 451 | > | w(i) = tmp; | 
| 452 | > |  | 
| 453 | > | v.swapRow(i, maxI); | 
| 454 | > | } | 
| 455 | > | // maximum element of eigenvector should be positive | 
| 456 | > | if (v(maxI, maxI) < 0) { | 
| 457 | > | v(maxI, 0) = -v(maxI, 0); | 
| 458 | > | v(maxI, 1) = -v(maxI, 1); | 
| 459 | > | v(maxI, 2) = -v(maxI, 2); | 
| 460 | > | } | 
| 461 | > |  | 
| 462 | > | // re-orthogonalize the other two eigenvectors | 
| 463 | > | j = (maxI+1)%3; | 
| 464 | > | k = (maxI+2)%3; | 
| 465 | > |  | 
| 466 | > | v(j, 0) = 0.0; | 
| 467 | > | v(j, 1) = 0.0; | 
| 468 | > | v(j, 2) = 0.0; | 
| 469 | > | v(j, j) = 1.0; | 
| 470 | > |  | 
| 471 | > | /** @todo */ | 
| 472 | > | v_maxI = v.getRow(maxI); | 
| 473 | > | v_j = v.getRow(j); | 
| 474 | > | v_k = cross(v_maxI, v_j); | 
| 475 | > | v_k.normalize(); | 
| 476 | > | v_j = cross(v_k, v_maxI); | 
| 477 | > | v.setRow(j, v_j); | 
| 478 | > | v.setRow(k, v_k); | 
| 479 | > |  | 
| 480 | > |  | 
| 481 | > | // transpose vectors back to columns | 
| 482 | > | v = v.transpose(); | 
| 483 | > | return; | 
| 484 | > | } | 
| 485 | > | } | 
| 486 | > |  | 
| 487 | > | // the three eigenvalues are different, just sort the eigenvectors | 
| 488 | > | // to align them with the x, y, and z axes | 
| 489 | > |  | 
| 490 | > | // find the vector with the largest x element, make that vector | 
| 491 | > | // the first vector | 
| 492 | > | maxVal = fabs(v(0, 0)); | 
| 493 | > | maxI = 0; | 
| 494 | > | for (i = 1; i < 3; i++) { | 
| 495 | > | if (maxVal < (tmp = fabs(v(i, 0)))) { | 
| 496 | > | maxVal = tmp; | 
| 497 | > | maxI = i; | 
| 498 | > | } | 
| 499 | > | } | 
| 500 | > |  | 
| 501 | > | // swap eigenvalue and eigenvector | 
| 502 | > | if (maxI != 0) { | 
| 503 | > | tmp = w(maxI); | 
| 504 | > | w(maxI) = w(0); | 
| 505 | > | w(0) = tmp; | 
| 506 | > | v.swapRow(maxI, 0); | 
| 507 | > | } | 
| 508 | > | // do the same for the y element | 
| 509 | > | if (fabs(v(1, 1)) < fabs(v(2, 1))) { | 
| 510 | > | tmp = w(2); | 
| 511 | > | w(2) = w(1); | 
| 512 | > | w(1) = tmp; | 
| 513 | > | v.swapRow(2, 1); | 
| 514 | > | } | 
| 515 | > |  | 
| 516 | > | // ensure that the sign of the eigenvectors is correct | 
| 517 | > | for (i = 0; i < 2; i++) { | 
| 518 | > | if (v(i, i) < 0) { | 
| 519 | > | v(i, 0) = -v(i, 0); | 
| 520 | > | v(i, 1) = -v(i, 1); | 
| 521 | > | v(i, 2) = -v(i, 2); | 
| 522 | > | } | 
| 523 | > | } | 
| 524 | > |  | 
| 525 | > | // set sign of final eigenvector to ensure that determinant is positive | 
| 526 | > | if (v.determinant() < 0) { | 
| 527 | > | v(2, 0) = -v(2, 0); | 
| 528 | > | v(2, 1) = -v(2, 1); | 
| 529 | > | v(2, 2) = -v(2, 2); | 
| 530 | > | } | 
| 531 | > |  | 
| 532 | > | // transpose the eigenvectors back again | 
| 533 | > | v = v.transpose(); | 
| 534 | > | return ; | 
| 535 | > | } | 
| 536 | > |  | 
| 537 | > | /** | 
| 538 | > | * Return the multiplication of two matrixes  (m1 * m2). | 
| 539 | > | * @return the multiplication of two matrixes | 
| 540 | > | * @param m1 the first matrix | 
| 541 | > | * @param m2 the second matrix | 
| 542 | > | */ | 
| 543 | > | template<typename Real> | 
| 544 | > | inline SquareMatrix3<Real> operator *(const SquareMatrix3<Real>& m1, const SquareMatrix3<Real>& m2) { | 
| 545 | > | SquareMatrix3<Real> result; | 
| 546 | > |  | 
| 547 | > | for (unsigned int i = 0; i < 3; i++) | 
| 548 | > | for (unsigned int j = 0; j < 3; j++) | 
| 549 | > | for (unsigned int k = 0; k < 3; k++) | 
| 550 | > | result(i, j)  += m1(i, k) * m2(k, j); | 
| 551 | > |  | 
| 552 | > | return result; | 
| 553 | > | } | 
| 554 | > |  | 
| 555 | > | template<typename Real> | 
| 556 | > | inline SquareMatrix3<Real> outProduct(const Vector3<Real>& v1, const Vector3<Real>& v2) { | 
| 557 | > | SquareMatrix3<Real> result; | 
| 558 | > |  | 
| 559 | > | for (unsigned int i = 0; i < 3; i++) { | 
| 560 | > | for (unsigned int j = 0; j < 3; j++) { | 
| 561 | > | result(i, j)  = v1[i] * v2[j]; | 
| 562 | > | } | 
| 563 | > | } | 
| 564 | > |  | 
| 565 | > | return result; | 
| 566 | > | } | 
| 567 | > |  | 
| 568 | > |  | 
| 569 | > | typedef SquareMatrix3<RealType> Mat3x3d; | 
| 570 | > | typedef SquareMatrix3<RealType> RotMat3x3d; | 
| 571 | > |  | 
| 572 | > | const Mat3x3d M3Zero(0.0); | 
| 573 | > |  | 
| 574 | > |  | 
| 575 | > | } //namespace OpenMD | 
| 576 |  | #endif // MATH_SQUAREMATRIX_HPP | 
| 577 | + |  |