| 29 |  | * @date 10/11/2004 | 
| 30 |  | * @version 1.0 | 
| 31 |  | */ | 
| 32 | < | #ifndef MATH_SQUAREMATRIX#_HPP | 
| 33 | < | #define  MATH_SQUAREMATRIX#_HPP | 
| 32 | > | #ifndef MATH_SQUAREMATRIX3_HPP | 
| 33 | > | #define  MATH_SQUAREMATRIX3_HPP | 
| 34 |  |  | 
| 35 | + | #include "Quaternion.hpp" | 
| 36 |  | #include "SquareMatrix.hpp" | 
| 37 | + | #include "Vector3.hpp" | 
| 38 | + |  | 
| 39 |  | namespace oopse { | 
| 40 |  |  | 
| 41 |  | template<typename Real> | 
| 50 |  | SquareMatrix3(const SquareMatrix<Real, 3>& m)  : SquareMatrix<Real, 3>(m) { | 
| 51 |  | } | 
| 52 |  |  | 
| 53 | + | SquareMatrix3( const Vector3<Real>& eulerAngles) { | 
| 54 | + | setupRotMat(eulerAngles); | 
| 55 | + | } | 
| 56 | + |  | 
| 57 | + | SquareMatrix3(Real phi, Real theta, Real psi) { | 
| 58 | + | setupRotMat(phi, theta, psi); | 
| 59 | + | } | 
| 60 | + |  | 
| 61 | + | SquareMatrix3(const Quaternion<Real>& q) { | 
| 62 | + | *this = q.toRotationMatrix3(); | 
| 63 | + | } | 
| 64 | + |  | 
| 65 | + | SquareMatrix3(Real w, Real x, Real y, Real z) { | 
| 66 | + | Quaternion<Real> q(w, x, y, z); | 
| 67 | + | *this = q.toRotationMatrix3(); | 
| 68 | + | } | 
| 69 | + |  | 
| 70 |  | /** copy assignment operator */ | 
| 71 |  | SquareMatrix3<Real>& operator =(const SquareMatrix<Real, 3>& m) { | 
| 72 |  | if (this == &m) | 
| 78 |  | * Sets this matrix to a rotation matrix by three euler angles | 
| 79 |  | * @ param euler | 
| 80 |  | */ | 
| 81 | < | void setupRotMat(const Vector3d& euler); | 
| 81 | > | void setupRotMat(const Vector3<Real>& eulerAngles) { | 
| 82 | > | setupRotMat(eulerAngles[0], eulerAngles[1], eulerAngles[2]); | 
| 83 | > | } | 
| 84 |  |  | 
| 85 |  | /** | 
| 86 |  | * Sets this matrix to a rotation matrix by three euler angles | 
| 88 |  | * @param theta | 
| 89 |  | * @psi theta | 
| 90 |  | */ | 
| 91 | < | void setupRotMat(double phi, double theta, double psi); | 
| 91 | > | void setupRotMat(Real phi, Real theta, Real psi) { | 
| 92 | > | Real sphi, stheta, spsi; | 
| 93 | > | Real cphi, ctheta, cpsi; | 
| 94 |  |  | 
| 95 | + | sphi = sin(phi); | 
| 96 | + | stheta = sin(theta); | 
| 97 | + | spsi = sin(psi); | 
| 98 | + | cphi = cos(phi); | 
| 99 | + | ctheta = cos(theta); | 
| 100 | + | cpsi = cos(psi); | 
| 101 |  |  | 
| 102 | + | data_[0][0] = cpsi * cphi - ctheta * sphi * spsi; | 
| 103 | + | data_[0][1] = cpsi * sphi + ctheta * cphi * spsi; | 
| 104 | + | data_[0][2] = spsi * stheta; | 
| 105 | + |  | 
| 106 | + | data_[1][0] = -spsi * ctheta - ctheta * sphi * cpsi; | 
| 107 | + | data_[1][1] = -spsi * stheta + ctheta * cphi * cpsi; | 
| 108 | + | data_[1][2] = cpsi * stheta; | 
| 109 | + |  | 
| 110 | + | data_[2][0] = stheta * sphi; | 
| 111 | + | data_[2][1] = -stheta * cphi; | 
| 112 | + | data_[2][2] = ctheta; | 
| 113 | + | } | 
| 114 | + |  | 
| 115 | + |  | 
| 116 |  | /** | 
| 117 |  | * Sets this matrix to a rotation matrix by quaternion | 
| 118 |  | * @param quat | 
| 119 |  | */ | 
| 120 | < | void setupRotMat(const Vector4d& quat); | 
| 120 | > | void setupRotMat(const Quaternion<Real>& quat) { | 
| 121 | > | *this = quat.toRotationMatrix3(); | 
| 122 | > | } | 
| 123 |  |  | 
| 124 |  | /** | 
| 125 |  | * Sets this matrix to a rotation matrix by quaternion | 
| 126 | < | * @param q0 | 
| 127 | < | * @param q1 | 
| 128 | < | * @param q2 | 
| 129 | < | * @parma q3 | 
| 126 | > | * @param w the first element | 
| 127 | > | * @param x the second element | 
| 128 | > | * @param y the third element | 
| 129 | > | * @parma z the fourth element | 
| 130 |  | */ | 
| 131 | < | void setupRotMat(double q0, double q1, double q2, double q4); | 
| 131 | > | void setupRotMat(Real w, Real x, Real y, Real z) { | 
| 132 | > | Quaternion<Real> q(w, x, y, z); | 
| 133 | > | *this = q.toRotationMatrix3(); | 
| 134 | > | } | 
| 135 |  |  | 
| 136 |  | /** | 
| 137 |  | * Returns the quaternion from this rotation matrix | 
| 138 |  | * @return the quaternion from this rotation matrix | 
| 139 |  | * @exception invalid rotation matrix | 
| 140 |  | */ | 
| 141 | < | Quaternion rotMatToQuat(); | 
| 141 | > | Quaternion<Real> toQuaternion() { | 
| 142 | > | Quaternion<Real> q; | 
| 143 | > | Real t, s; | 
| 144 | > | Real ad1, ad2, ad3; | 
| 145 | > | t = data_[0][0] + data_[1][1] + data_[2][2] + 1.0; | 
| 146 |  |  | 
| 147 | + | if( t > 0.0 ){ | 
| 148 | + |  | 
| 149 | + | s = 0.5 / sqrt( t ); | 
| 150 | + | q[0] = 0.25 / s; | 
| 151 | + | q[1] = (data_[1][2] - data_[2][1]) * s; | 
| 152 | + | q[2] = (data_[2][0] - data_[0][2]) * s; | 
| 153 | + | q[3] = (data_[0][1] - data_[1][0]) * s; | 
| 154 | + | } else { | 
| 155 | + |  | 
| 156 | + | ad1 = fabs( data_[0][0] ); | 
| 157 | + | ad2 = fabs( data_[1][1] ); | 
| 158 | + | ad3 = fabs( data_[2][2] ); | 
| 159 | + |  | 
| 160 | + | if( ad1 >= ad2 && ad1 >= ad3 ){ | 
| 161 | + |  | 
| 162 | + | s = 2.0 * sqrt( 1.0 + data_[0][0] - data_[1][1] - data_[2][2] ); | 
| 163 | + | q[0] = (data_[1][2] + data_[2][1]) / s; | 
| 164 | + | q[1] = 0.5 / s; | 
| 165 | + | q[2] = (data_[0][1] + data_[1][0]) / s; | 
| 166 | + | q[3] = (data_[0][2] + data_[2][0]) / s; | 
| 167 | + | } else if ( ad2 >= ad1 && ad2 >= ad3 ) { | 
| 168 | + | s = sqrt( 1.0 + data_[1][1] - data_[0][0] - data_[2][2] ) * 2.0; | 
| 169 | + | q[0] = (data_[0][2] + data_[2][0]) / s; | 
| 170 | + | q[1] = (data_[0][1] + data_[1][0]) / s; | 
| 171 | + | q[2] = 0.5 / s; | 
| 172 | + | q[3] = (data_[1][2] + data_[2][1]) / s; | 
| 173 | + | } else { | 
| 174 | + |  | 
| 175 | + | s = sqrt( 1.0 + data_[2][2] - data_[0][0] - data_[1][1] ) * 2.0; | 
| 176 | + | q[0] = (data_[0][1] + data_[1][0]) / s; | 
| 177 | + | q[1] = (data_[0][2] + data_[2][0]) / s; | 
| 178 | + | q[2] = (data_[1][2] + data_[2][1]) / s; | 
| 179 | + | q[3] = 0.5 / s; | 
| 180 | + | } | 
| 181 | + | } | 
| 182 | + |  | 
| 183 | + | return q; | 
| 184 | + |  | 
| 185 | + | } | 
| 186 | + |  | 
| 187 |  | /** | 
| 188 |  | * Returns the euler angles from this rotation matrix | 
| 189 | < | * @return the quaternion from this rotation matrix | 
| 189 | > | * @return the euler angles in a vector | 
| 190 |  | * @exception invalid rotation matrix | 
| 191 | + | * We use so-called "x-convention", which is the most common definition. | 
| 192 | + | * In this convention, the rotation given by Euler angles (phi, theta, psi), where the first | 
| 193 | + | * rotation is by an angle phi about the z-axis, the second is by an angle | 
| 194 | + | * theta (0 <= theta <= 180)about the x-axis, and thethird is by an angle psi about the | 
| 195 | + | * z-axis (again). | 
| 196 |  | */ | 
| 197 | < | Vector3d rotMatToEuler(); | 
| 197 | > | Vector3<Real> toEulerAngles() { | 
| 198 | > | Vector<Real> myEuler; | 
| 199 | > | Real phi,theta,psi,eps; | 
| 200 | > | Real ctheta,stheta; | 
| 201 | > |  | 
| 202 | > | // set the tolerance for Euler angles and rotation elements | 
| 203 | > |  | 
| 204 | > | theta = acos(min(1.0,max(-1.0,data_[2][2]))); | 
| 205 | > | ctheta = data_[2][2]; | 
| 206 | > | stheta = sqrt(1.0 - ctheta * ctheta); | 
| 207 | > |  | 
| 208 | > | // when sin(theta) is close to 0, we need to consider singularity | 
| 209 | > | // In this case, we can assign an arbitary value to phi (or psi), and then determine | 
| 210 | > | // the psi (or phi) or vice-versa. We'll assume that phi always gets the rotation, and psi is 0 | 
| 211 | > | // in cases of singularity. | 
| 212 | > | // we use atan2 instead of atan, since atan2 will give us -Pi to Pi. | 
| 213 | > | // Since 0 <= theta <= 180, sin(theta) will be always non-negative. Therefore, it never | 
| 214 | > | // change the sign of both of the parameters passed to atan2. | 
| 215 | > |  | 
| 216 | > | if (fabs(stheta) <= oopse::epsilon){ | 
| 217 | > | psi = 0.0; | 
| 218 | > | phi = atan2(-data_[1][0], data_[0][0]); | 
| 219 | > | } | 
| 220 | > | // we only have one unique solution | 
| 221 | > | else{ | 
| 222 | > | phi = atan2(data_[2][0], -data_[2][1]); | 
| 223 | > | psi = atan2(data_[0][2], data_[1][2]); | 
| 224 | > | } | 
| 225 | > |  | 
| 226 | > | //wrap phi and psi, make sure they are in the range from 0 to 2*Pi | 
| 227 | > | if (phi < 0) | 
| 228 | > | phi += M_PI; | 
| 229 | > |  | 
| 230 | > | if (psi < 0) | 
| 231 | > | psi += M_PI; | 
| 232 | > |  | 
| 233 | > | myEuler[0] = phi; | 
| 234 | > | myEuler[1] = theta; | 
| 235 | > | myEuler[2] = psi; | 
| 236 | > |  | 
| 237 | > | return myEuler; | 
| 238 | > | } | 
| 239 |  |  | 
| 240 |  | /** | 
| 241 |  | * Sets the value of this matrix to  the inversion of itself. | 
| 242 |  | * @note since simple algorithm can be applied to inverse the 3 by 3 matrix, we hide the | 
| 243 |  | * implementation of inverse in SquareMatrix class | 
| 244 |  | */ | 
| 245 | < | void  inverse(); | 
| 245 | > | void  inverse() { | 
| 246 |  |  | 
| 247 | < | void diagonalize(); | 
| 247 | > | } | 
| 248 |  |  | 
| 249 | < | } | 
| 249 | > | void diagonalize() { | 
| 250 |  |  | 
| 251 | + | } | 
| 252 |  | }; | 
| 253 |  |  | 
| 254 | < | } | 
| 255 | < | #endif // MATH_SQUAREMATRIX#_HPP | 
| 254 | > | typedef SquareMatrix3<double> Mat3x3d; | 
| 255 | > | typedef SquareMatrix3<double> RotMat3x3d; | 
| 256 | > |  | 
| 257 | > | } //namespace oopse | 
| 258 | > | #endif // MATH_SQUAREMATRIX_HPP |