| 47 | 
  | 
 */ | 
| 48 | 
  | 
#ifndef MATH_SQUAREMATRIX3_HPP | 
| 49 | 
  | 
#define  MATH_SQUAREMATRIX3_HPP | 
| 50 | 
< | 
 | 
| 50 | 
> | 
#include <vector> | 
| 51 | 
  | 
#include "Quaternion.hpp" | 
| 52 | 
  | 
#include "SquareMatrix.hpp" | 
| 53 | 
  | 
#include "Vector3.hpp" | 
| 244 | 
  | 
     * @return the euler angles in a vector  | 
| 245 | 
  | 
     * @exception invalid rotation matrix | 
| 246 | 
  | 
     * We use so-called "x-convention", which is the most common definition.  | 
| 247 | 
< | 
     * In this convention, the rotation given by Euler angles (phi, theta, psi), where the first  | 
| 248 | 
< | 
     * rotation is by an angle phi about the z-axis, the second is by an angle   | 
| 249 | 
< | 
     * theta (0 <= theta <= 180)about the x-axis, and thethird is by an angle psi about the | 
| 250 | 
< | 
     * z-axis (again).  | 
| 247 | 
> | 
     * In this convention, the rotation given by Euler angles (phi, theta,  | 
| 248 | 
> | 
     * psi), where the first rotation is by an angle phi about the z-axis,  | 
| 249 | 
> | 
     * the second is by an angle theta (0 <= theta <= 180) about the x-axis,  | 
| 250 | 
> | 
     * and the third is by an angle psi about the z-axis (again).  | 
| 251 | 
  | 
     */             | 
| 252 | 
  | 
    Vector3<Real> toEulerAngles() { | 
| 253 | 
  | 
      Vector3<Real> myEuler; | 
| 259 | 
  | 
                 | 
| 260 | 
  | 
      // set the tolerance for Euler angles and rotation elements | 
| 261 | 
  | 
 | 
| 262 | 
< | 
      theta = acos(std::min(1.0, std::max(-1.0,this->data_[2][2]))); | 
| 262 | 
> | 
      theta = acos(std::min((RealType)1.0, std::max((RealType)-1.0,this->data_[2][2]))); | 
| 263 | 
  | 
      ctheta = this->data_[2][2];  | 
| 264 | 
  | 
      stheta = sqrt(1.0 - ctheta * ctheta); | 
| 265 | 
  | 
 | 
| 266 | 
< | 
      // when sin(theta) is close to 0, we need to consider singularity | 
| 267 | 
< | 
      // In this case, we can assign an arbitary value to phi (or psi), and then determine  | 
| 268 | 
< | 
      // the psi (or phi) or vice-versa. We'll assume that phi always gets the rotation, and psi is 0 | 
| 269 | 
< | 
      // in cases of singularity.   | 
| 266 | 
> | 
      // when sin(theta) is close to 0, we need to consider | 
| 267 | 
> | 
      // singularity In this case, we can assign an arbitary value to | 
| 268 | 
> | 
      // phi (or psi), and then determine the psi (or phi) or | 
| 269 | 
> | 
      // vice-versa. We'll assume that phi always gets the rotation, | 
| 270 | 
> | 
      // and psi is 0 in cases of singularity. | 
| 271 | 
  | 
      // we use atan2 instead of atan, since atan2 will give us -Pi to Pi.  | 
| 272 | 
< | 
      // Since 0 <= theta <= 180, sin(theta) will be always non-negative. Therefore, it never | 
| 273 | 
< | 
      // change the sign of both of the parameters passed to atan2. | 
| 272 | 
> | 
      // Since 0 <= theta <= 180, sin(theta) will be always | 
| 273 | 
> | 
      // non-negative. Therefore, it will never change the sign of both of | 
| 274 | 
> | 
      // the parameters passed to atan2. | 
| 275 | 
  | 
 | 
| 276 | 
< | 
      if (fabs(stheta) <= oopse::epsilon){ | 
| 276 | 
> | 
      if (fabs(stheta) < 1e-6){ | 
| 277 | 
  | 
        psi = 0.0; | 
| 278 | 
  | 
        phi = atan2(-this->data_[1][0], this->data_[0][0]);   | 
| 279 | 
  | 
      } | 
| 285 | 
  | 
 | 
| 286 | 
  | 
      //wrap phi and psi, make sure they are in the range from 0 to 2*Pi | 
| 287 | 
  | 
      if (phi < 0) | 
| 288 | 
< | 
        phi += M_PI; | 
| 288 | 
> | 
        phi += 2.0 * M_PI; | 
| 289 | 
  | 
 | 
| 290 | 
  | 
      if (psi < 0) | 
| 291 | 
< | 
        psi += M_PI; | 
| 291 | 
> | 
        psi += 2.0 * M_PI; | 
| 292 | 
  | 
 | 
| 293 | 
  | 
      myEuler[0] = phi; | 
| 294 | 
  | 
      myEuler[1] = theta; | 
| 320 | 
  | 
     */ | 
| 321 | 
  | 
    SquareMatrix3<Real>  inverse() const { | 
| 322 | 
  | 
      SquareMatrix3<Real> m; | 
| 323 | 
< | 
      double det = determinant(); | 
| 323 | 
> | 
      RealType det = determinant(); | 
| 324 | 
  | 
      if (fabs(det) <= oopse::epsilon) { | 
| 325 | 
  | 
        //"The method was called on a matrix with |determinant| <= 1e-6.", | 
| 326 | 
  | 
        //"This is a runtime or a programming error in your application."); | 
| 327 | 
< | 
      } | 
| 328 | 
< | 
 | 
| 329 | 
< | 
      m(0, 0) = this->data_[1][1]*this->data_[2][2] - this->data_[1][2]*this->data_[2][1]; | 
| 330 | 
< | 
      m(1, 0) = this->data_[1][2]*this->data_[2][0] - this->data_[1][0]*this->data_[2][2]; | 
| 331 | 
< | 
      m(2, 0) = this->data_[1][0]*this->data_[2][1] - this->data_[1][1]*this->data_[2][0]; | 
| 332 | 
< | 
      m(0, 1) = this->data_[2][1]*this->data_[0][2] - this->data_[2][2]*this->data_[0][1]; | 
| 331 | 
< | 
      m(1, 1) = this->data_[2][2]*this->data_[0][0] - this->data_[2][0]*this->data_[0][2]; | 
| 332 | 
< | 
      m(2, 1) = this->data_[2][0]*this->data_[0][1] - this->data_[2][1]*this->data_[0][0]; | 
| 333 | 
< | 
      m(0, 2) = this->data_[0][1]*this->data_[1][2] - this->data_[0][2]*this->data_[1][1]; | 
| 334 | 
< | 
      m(1, 2) = this->data_[0][2]*this->data_[1][0] - this->data_[0][0]*this->data_[1][2]; | 
| 335 | 
< | 
      m(2, 2) = this->data_[0][0]*this->data_[1][1] - this->data_[0][1]*this->data_[1][0]; | 
| 327 | 
> | 
        std::vector<int> zeroDiagElementIndex; | 
| 328 | 
> | 
        for (int i =0; i < 3; ++i) { | 
| 329 | 
> | 
            if (fabs(this->data_[i][i]) <= oopse::epsilon) { | 
| 330 | 
> | 
                zeroDiagElementIndex.push_back(i); | 
| 331 | 
> | 
            } | 
| 332 | 
> | 
        } | 
| 333 | 
  | 
 | 
| 334 | 
< | 
      m /= det; | 
| 334 | 
> | 
        if (zeroDiagElementIndex.size() == 2) { | 
| 335 | 
> | 
            int index = zeroDiagElementIndex[0]; | 
| 336 | 
> | 
            m(index, index) = 1.0 / this->data_[index][index]; | 
| 337 | 
> | 
        }else if (zeroDiagElementIndex.size() == 1) { | 
| 338 | 
> | 
 | 
| 339 | 
> | 
            int a = (zeroDiagElementIndex[0] + 1) % 3; | 
| 340 | 
> | 
            int b = (zeroDiagElementIndex[0] + 2) %3; | 
| 341 | 
> | 
            RealType denom = this->data_[a][a] * this->data_[b][b] - this->data_[b][a]*this->data_[a][b]; | 
| 342 | 
> | 
            m(a, a) = this->data_[b][b] /denom; | 
| 343 | 
> | 
            m(b, a) = -this->data_[b][a]/denom; | 
| 344 | 
> | 
 | 
| 345 | 
> | 
            m(a,b) = -this->data_[a][b]/denom; | 
| 346 | 
> | 
            m(b, b) = this->data_[a][a]/denom; | 
| 347 | 
> | 
                 | 
| 348 | 
> | 
        } | 
| 349 | 
> | 
       | 
| 350 | 
> | 
/* | 
| 351 | 
> | 
        for(std::vector<int>::iterator iter = zeroDiagElementIndex.begin(); iter != zeroDiagElementIndex.end() ++iter) { | 
| 352 | 
> | 
            if (this->data_[*iter][0] > oopse::epsilon || this->data_[*iter][1] ||this->data_[*iter][2] || | 
| 353 | 
> | 
                this->data_[0][*iter] > oopse::epsilon || this->data_[1][*iter] ||this->data_[2][*iter] ) { | 
| 354 | 
> | 
                std::cout << "can not inverse matrix" << std::endl; | 
| 355 | 
> | 
            } | 
| 356 | 
> | 
        } | 
| 357 | 
> | 
*/ | 
| 358 | 
> | 
      } else { | 
| 359 | 
> | 
 | 
| 360 | 
> | 
          m(0, 0) = this->data_[1][1]*this->data_[2][2] - this->data_[1][2]*this->data_[2][1]; | 
| 361 | 
> | 
          m(1, 0) = this->data_[1][2]*this->data_[2][0] - this->data_[1][0]*this->data_[2][2]; | 
| 362 | 
> | 
          m(2, 0) = this->data_[1][0]*this->data_[2][1] - this->data_[1][1]*this->data_[2][0]; | 
| 363 | 
> | 
          m(0, 1) = this->data_[2][1]*this->data_[0][2] - this->data_[2][2]*this->data_[0][1]; | 
| 364 | 
> | 
          m(1, 1) = this->data_[2][2]*this->data_[0][0] - this->data_[2][0]*this->data_[0][2]; | 
| 365 | 
> | 
          m(2, 1) = this->data_[2][0]*this->data_[0][1] - this->data_[2][1]*this->data_[0][0]; | 
| 366 | 
> | 
          m(0, 2) = this->data_[0][1]*this->data_[1][2] - this->data_[0][2]*this->data_[1][1]; | 
| 367 | 
> | 
          m(1, 2) = this->data_[0][2]*this->data_[1][0] - this->data_[0][0]*this->data_[1][2]; | 
| 368 | 
> | 
          m(2, 2) = this->data_[0][0]*this->data_[1][1] - this->data_[0][1]*this->data_[1][0]; | 
| 369 | 
> | 
 | 
| 370 | 
> | 
          m /= det; | 
| 371 | 
> | 
        } | 
| 372 | 
  | 
      return m; | 
| 373 | 
  | 
    } | 
| 374 | 
  | 
 | 
| 563 | 
  | 
  } | 
| 564 | 
  | 
 | 
| 565 | 
  | 
     | 
| 566 | 
< | 
  typedef SquareMatrix3<double> Mat3x3d; | 
| 567 | 
< | 
  typedef SquareMatrix3<double> RotMat3x3d; | 
| 566 | 
> | 
  typedef SquareMatrix3<RealType> Mat3x3d; | 
| 567 | 
> | 
  typedef SquareMatrix3<RealType> RotMat3x3d; | 
| 568 | 
  | 
 | 
| 569 | 
  | 
} //namespace oopse | 
| 570 | 
  | 
#endif // MATH_SQUAREMATRIX_HPP |