# | Line 1 | Line 1 | |
---|---|---|
1 | < | /* |
2 | < | * Copyright (C) 2000-2004 Object Oriented Parallel Simulation Engine (OOPSE) project |
3 | < | * |
4 | < | * Contact: oopse@oopse.org |
5 | < | * |
6 | < | * This program is free software; you can redistribute it and/or |
7 | < | * modify it under the terms of the GNU Lesser General Public License |
8 | < | * as published by the Free Software Foundation; either version 2.1 |
9 | < | * of the License, or (at your option) any later version. |
10 | < | * All we ask is that proper credit is given for our work, which includes |
11 | < | * - but is not limited to - adding the above copyright notice to the beginning |
12 | < | * of your source code files, and to any copyright notice that you may distribute |
13 | < | * with programs based on this work. |
14 | < | * |
15 | < | * This program is distributed in the hope that it will be useful, |
16 | < | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
17 | < | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
18 | < | * GNU Lesser General Public License for more details. |
19 | < | * |
20 | < | * You should have received a copy of the GNU Lesser General Public License |
21 | < | * along with this program; if not, write to the Free Software |
22 | < | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
1 | > | /* |
2 | > | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 | * | |
4 | + | * The University of Notre Dame grants you ("Licensee") a |
5 | + | * non-exclusive, royalty free, license to use, modify and |
6 | + | * redistribute this software in source and binary code form, provided |
7 | + | * that the following conditions are met: |
8 | + | * |
9 | + | * 1. Acknowledgement of the program authors must be made in any |
10 | + | * publication of scientific results based in part on use of the |
11 | + | * program. An acceptable form of acknowledgement is citation of |
12 | + | * the article in which the program was described (Matthew |
13 | + | * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 | + | * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 | + | * Parallel Simulation Engine for Molecular Dynamics," |
16 | + | * J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 | + | * |
18 | + | * 2. Redistributions of source code must retain the above copyright |
19 | + | * notice, this list of conditions and the following disclaimer. |
20 | + | * |
21 | + | * 3. Redistributions in binary form must reproduce the above copyright |
22 | + | * notice, this list of conditions and the following disclaimer in the |
23 | + | * documentation and/or other materials provided with the |
24 | + | * distribution. |
25 | + | * |
26 | + | * This software is provided "AS IS," without a warranty of any |
27 | + | * kind. All express or implied conditions, representations and |
28 | + | * warranties, including any implied warranty of merchantability, |
29 | + | * fitness for a particular purpose or non-infringement, are hereby |
30 | + | * excluded. The University of Notre Dame and its licensors shall not |
31 | + | * be liable for any damages suffered by licensee as a result of |
32 | + | * using, modifying or distributing the software or its |
33 | + | * derivatives. In no event will the University of Notre Dame or its |
34 | + | * licensors be liable for any lost revenue, profit or data, or for |
35 | + | * direct, indirect, special, consequential, incidental or punitive |
36 | + | * damages, however caused and regardless of the theory of liability, |
37 | + | * arising out of the use of or inability to use software, even if the |
38 | + | * University of Notre Dame has been advised of the possibility of |
39 | + | * such damages. |
40 | */ | |
41 | < | |
41 | > | |
42 | /** | |
43 | * @file SquareMatrix3.hpp | |
44 | * @author Teng Lin | |
45 | * @date 10/11/2004 | |
46 | * @version 1.0 | |
47 | */ | |
48 | < | #ifndef MATH_SQUAREMATRIX#_HPP |
49 | < | #define MATH_SQUAREMATRIX#_HPP |
48 | > | #ifndef MATH_SQUAREMATRIX3_HPP |
49 | > | #define MATH_SQUAREMATRIX3_HPP |
50 | ||
51 | + | #include "Quaternion.hpp" |
52 | #include "SquareMatrix.hpp" | |
53 | + | #include "Vector3.hpp" |
54 | + | |
55 | namespace oopse { | |
56 | ||
57 | template<typename Real> | |
58 | class SquareMatrix3 : public SquareMatrix<Real, 3> { | |
59 | public: | |
60 | + | |
61 | + | typedef Real ElemType; |
62 | + | typedef Real* ElemPoinerType; |
63 | ||
64 | /** default constructor */ | |
65 | SquareMatrix3() : SquareMatrix<Real, 3>() { | |
66 | } | |
67 | ||
68 | + | /** Constructs and initializes every element of this matrix to a scalar */ |
69 | + | SquareMatrix3(Real s) : SquareMatrix<Real,3>(s){ |
70 | + | } |
71 | + | |
72 | + | /** Constructs and initializes from an array */ |
73 | + | SquareMatrix3(Real* array) : SquareMatrix<Real,3>(array){ |
74 | + | } |
75 | + | |
76 | + | |
77 | /** copy constructor */ | |
78 | SquareMatrix3(const SquareMatrix<Real, 3>& m) : SquareMatrix<Real, 3>(m) { | |
79 | } | |
80 | + | |
81 | + | SquareMatrix3( const Vector3<Real>& eulerAngles) { |
82 | + | setupRotMat(eulerAngles); |
83 | + | } |
84 | + | |
85 | + | SquareMatrix3(Real phi, Real theta, Real psi) { |
86 | + | setupRotMat(phi, theta, psi); |
87 | + | } |
88 | ||
89 | + | SquareMatrix3(const Quaternion<Real>& q) { |
90 | + | setupRotMat(q); |
91 | + | |
92 | + | } |
93 | + | |
94 | + | SquareMatrix3(Real w, Real x, Real y, Real z) { |
95 | + | setupRotMat(w, x, y, z); |
96 | + | } |
97 | + | |
98 | /** copy assignment operator */ | |
99 | SquareMatrix3<Real>& operator =(const SquareMatrix<Real, 3>& m) { | |
100 | if (this == &m) | |
101 | return *this; | |
102 | SquareMatrix<Real, 3>::operator=(m); | |
103 | + | return *this; |
104 | } | |
105 | ||
106 | + | |
107 | + | SquareMatrix3<Real>& operator =(const Quaternion<Real>& q) { |
108 | + | this->setupRotMat(q); |
109 | + | return *this; |
110 | + | } |
111 | + | |
112 | /** | |
113 | * Sets this matrix to a rotation matrix by three euler angles | |
114 | * @ param euler | |
115 | */ | |
116 | < | void setupRotMat(const Vector3d& euler); |
116 | > | void setupRotMat(const Vector3<Real>& eulerAngles) { |
117 | > | setupRotMat(eulerAngles[0], eulerAngles[1], eulerAngles[2]); |
118 | > | } |
119 | ||
120 | /** | |
121 | * Sets this matrix to a rotation matrix by three euler angles | |
# | Line 66 | Line 123 | namespace oopse { | |
123 | * @param theta | |
124 | * @psi theta | |
125 | */ | |
126 | < | void setupRotMat(double phi, double theta, double psi); |
126 | > | void setupRotMat(Real phi, Real theta, Real psi) { |
127 | > | Real sphi, stheta, spsi; |
128 | > | Real cphi, ctheta, cpsi; |
129 | ||
130 | + | sphi = sin(phi); |
131 | + | stheta = sin(theta); |
132 | + | spsi = sin(psi); |
133 | + | cphi = cos(phi); |
134 | + | ctheta = cos(theta); |
135 | + | cpsi = cos(psi); |
136 | ||
137 | + | this->data_[0][0] = cpsi * cphi - ctheta * sphi * spsi; |
138 | + | this->data_[0][1] = cpsi * sphi + ctheta * cphi * spsi; |
139 | + | this->data_[0][2] = spsi * stheta; |
140 | + | |
141 | + | this->data_[1][0] = -spsi * ctheta - ctheta * sphi * cpsi; |
142 | + | this->data_[1][1] = -spsi * stheta + ctheta * cphi * cpsi; |
143 | + | this->data_[1][2] = cpsi * stheta; |
144 | + | |
145 | + | this->data_[2][0] = stheta * sphi; |
146 | + | this->data_[2][1] = -stheta * cphi; |
147 | + | this->data_[2][2] = ctheta; |
148 | + | } |
149 | + | |
150 | + | |
151 | /** | |
152 | * Sets this matrix to a rotation matrix by quaternion | |
153 | * @param quat | |
154 | */ | |
155 | < | void setupRotMat(const Vector4d& quat); |
155 | > | void setupRotMat(const Quaternion<Real>& quat) { |
156 | > | setupRotMat(quat.w(), quat.x(), quat.y(), quat.z()); |
157 | > | } |
158 | ||
159 | /** | |
160 | * Sets this matrix to a rotation matrix by quaternion | |
161 | < | * @param q0 |
162 | < | * @param q1 |
163 | < | * @param q2 |
164 | < | * @parma q3 |
161 | > | * @param w the first element |
162 | > | * @param x the second element |
163 | > | * @param y the third element |
164 | > | * @param z the fourth element |
165 | */ | |
166 | < | void setupRotMat(double q0, double q1, double q2, double q4); |
166 | > | void setupRotMat(Real w, Real x, Real y, Real z) { |
167 | > | Quaternion<Real> q(w, x, y, z); |
168 | > | *this = q.toRotationMatrix3(); |
169 | > | } |
170 | ||
171 | /** | |
172 | * Returns the quaternion from this rotation matrix | |
173 | * @return the quaternion from this rotation matrix | |
174 | * @exception invalid rotation matrix | |
175 | */ | |
176 | < | Quaternion rotMatToQuat(); |
176 | > | Quaternion<Real> toQuaternion() { |
177 | > | Quaternion<Real> q; |
178 | > | Real t, s; |
179 | > | Real ad1, ad2, ad3; |
180 | > | t = this->data_[0][0] + this->data_[1][1] + this->data_[2][2] + 1.0; |
181 | ||
182 | + | if( t > 0.0 ){ |
183 | + | |
184 | + | s = 0.5 / sqrt( t ); |
185 | + | q[0] = 0.25 / s; |
186 | + | q[1] = (this->data_[1][2] - this->data_[2][1]) * s; |
187 | + | q[2] = (this->data_[2][0] - this->data_[0][2]) * s; |
188 | + | q[3] = (this->data_[0][1] - this->data_[1][0]) * s; |
189 | + | } else { |
190 | + | |
191 | + | ad1 = fabs( this->data_[0][0] ); |
192 | + | ad2 = fabs( this->data_[1][1] ); |
193 | + | ad3 = fabs( this->data_[2][2] ); |
194 | + | |
195 | + | if( ad1 >= ad2 && ad1 >= ad3 ){ |
196 | + | |
197 | + | s = 2.0 * sqrt( 1.0 + this->data_[0][0] - this->data_[1][1] - this->data_[2][2] ); |
198 | + | q[0] = (this->data_[1][2] + this->data_[2][1]) / s; |
199 | + | q[1] = 0.5 / s; |
200 | + | q[2] = (this->data_[0][1] + this->data_[1][0]) / s; |
201 | + | q[3] = (this->data_[0][2] + this->data_[2][0]) / s; |
202 | + | } else if ( ad2 >= ad1 && ad2 >= ad3 ) { |
203 | + | s = sqrt( 1.0 + this->data_[1][1] - this->data_[0][0] - this->data_[2][2] ) * 2.0; |
204 | + | q[0] = (this->data_[0][2] + this->data_[2][0]) / s; |
205 | + | q[1] = (this->data_[0][1] + this->data_[1][0]) / s; |
206 | + | q[2] = 0.5 / s; |
207 | + | q[3] = (this->data_[1][2] + this->data_[2][1]) / s; |
208 | + | } else { |
209 | + | |
210 | + | s = sqrt( 1.0 + this->data_[2][2] - this->data_[0][0] - this->data_[1][1] ) * 2.0; |
211 | + | q[0] = (this->data_[0][1] + this->data_[1][0]) / s; |
212 | + | q[1] = (this->data_[0][2] + this->data_[2][0]) / s; |
213 | + | q[2] = (this->data_[1][2] + this->data_[2][1]) / s; |
214 | + | q[3] = 0.5 / s; |
215 | + | } |
216 | + | } |
217 | + | |
218 | + | return q; |
219 | + | |
220 | + | } |
221 | + | |
222 | /** | |
223 | * Returns the euler angles from this rotation matrix | |
224 | < | * @return the quaternion from this rotation matrix |
224 | > | * @return the euler angles in a vector |
225 | * @exception invalid rotation matrix | |
226 | + | * We use so-called "x-convention", which is the most common definition. |
227 | + | * In this convention, the rotation given by Euler angles (phi, theta, psi), where the first |
228 | + | * rotation is by an angle phi about the z-axis, the second is by an angle |
229 | + | * theta (0 <= theta <= 180)about the x-axis, and thethird is by an angle psi about the |
230 | + | * z-axis (again). |
231 | */ | |
232 | < | Vector3d rotMatToEuler(); |
232 | > | Vector3<Real> toEulerAngles() { |
233 | > | Vector3<Real> myEuler; |
234 | > | Real phi; |
235 | > | Real theta; |
236 | > | Real psi; |
237 | > | Real ctheta; |
238 | > | Real stheta; |
239 | > | |
240 | > | // set the tolerance for Euler angles and rotation elements |
241 | > | |
242 | > | theta = acos(std::min(1.0, std::max(-1.0,this->data_[2][2]))); |
243 | > | ctheta = this->data_[2][2]; |
244 | > | stheta = sqrt(1.0 - ctheta * ctheta); |
245 | > | |
246 | > | // when sin(theta) is close to 0, we need to consider singularity |
247 | > | // In this case, we can assign an arbitary value to phi (or psi), and then determine |
248 | > | // the psi (or phi) or vice-versa. We'll assume that phi always gets the rotation, and psi is 0 |
249 | > | // in cases of singularity. |
250 | > | // we use atan2 instead of atan, since atan2 will give us -Pi to Pi. |
251 | > | // Since 0 <= theta <= 180, sin(theta) will be always non-negative. Therefore, it never |
252 | > | // change the sign of both of the parameters passed to atan2. |
253 | > | |
254 | > | if (fabs(stheta) <= oopse::epsilon){ |
255 | > | psi = 0.0; |
256 | > | phi = atan2(-this->data_[1][0], this->data_[0][0]); |
257 | > | } |
258 | > | // we only have one unique solution |
259 | > | else{ |
260 | > | phi = atan2(this->data_[2][0], -this->data_[2][1]); |
261 | > | psi = atan2(this->data_[0][2], this->data_[1][2]); |
262 | > | } |
263 | > | |
264 | > | //wrap phi and psi, make sure they are in the range from 0 to 2*Pi |
265 | > | if (phi < 0) |
266 | > | phi += M_PI; |
267 | > | |
268 | > | if (psi < 0) |
269 | > | psi += M_PI; |
270 | > | |
271 | > | myEuler[0] = phi; |
272 | > | myEuler[1] = theta; |
273 | > | myEuler[2] = psi; |
274 | > | |
275 | > | return myEuler; |
276 | > | } |
277 | ||
278 | + | /** Returns the determinant of this matrix. */ |
279 | + | Real determinant() const { |
280 | + | Real x,y,z; |
281 | + | |
282 | + | x = this->data_[0][0] * (this->data_[1][1] * this->data_[2][2] - this->data_[1][2] * this->data_[2][1]); |
283 | + | y = this->data_[0][1] * (this->data_[1][2] * this->data_[2][0] - this->data_[1][0] * this->data_[2][2]); |
284 | + | z = this->data_[0][2] * (this->data_[1][0] * this->data_[2][1] - this->data_[1][1] * this->data_[2][0]); |
285 | + | |
286 | + | return(x + y + z); |
287 | + | } |
288 | + | |
289 | + | /** Returns the trace of this matrix. */ |
290 | + | Real trace() const { |
291 | + | return this->data_[0][0] + this->data_[1][1] + this->data_[2][2]; |
292 | + | } |
293 | + | |
294 | /** | |
295 | * Sets the value of this matrix to the inversion of itself. | |
296 | * @note since simple algorithm can be applied to inverse the 3 by 3 matrix, we hide the | |
297 | * implementation of inverse in SquareMatrix class | |
298 | */ | |
299 | < | void inverse(); |
299 | > | SquareMatrix3<Real> inverse() const { |
300 | > | SquareMatrix3<Real> m; |
301 | > | double det = determinant(); |
302 | > | if (fabs(det) <= oopse::epsilon) { |
303 | > | //"The method was called on a matrix with |determinant| <= 1e-6.", |
304 | > | //"This is a runtime or a programming error in your application."); |
305 | > | } |
306 | ||
307 | < | void diagonalize(); |
307 | > | m(0, 0) = this->data_[1][1]*this->data_[2][2] - this->data_[1][2]*this->data_[2][1]; |
308 | > | m(1, 0) = this->data_[1][2]*this->data_[2][0] - this->data_[1][0]*this->data_[2][2]; |
309 | > | m(2, 0) = this->data_[1][0]*this->data_[2][1] - this->data_[1][1]*this->data_[2][0]; |
310 | > | m(0, 1) = this->data_[2][1]*this->data_[0][2] - this->data_[2][2]*this->data_[0][1]; |
311 | > | m(1, 1) = this->data_[2][2]*this->data_[0][0] - this->data_[2][0]*this->data_[0][2]; |
312 | > | m(2, 1) = this->data_[2][0]*this->data_[0][1] - this->data_[2][1]*this->data_[0][0]; |
313 | > | m(0, 2) = this->data_[0][1]*this->data_[1][2] - this->data_[0][2]*this->data_[1][1]; |
314 | > | m(1, 2) = this->data_[0][2]*this->data_[1][0] - this->data_[0][0]*this->data_[1][2]; |
315 | > | m(2, 2) = this->data_[0][0]*this->data_[1][1] - this->data_[0][1]*this->data_[1][0]; |
316 | ||
317 | + | m /= det; |
318 | + | return m; |
319 | + | } |
320 | + | /** |
321 | + | * Extract the eigenvalues and eigenvectors from a 3x3 matrix. |
322 | + | * The eigenvectors (the columns of V) will be normalized. |
323 | + | * The eigenvectors are aligned optimally with the x, y, and z |
324 | + | * axes respectively. |
325 | + | * @param a symmetric matrix whose eigenvectors are to be computed. On return, the matrix is |
326 | + | * overwritten |
327 | + | * @param w will contain the eigenvalues of the matrix On return of this function |
328 | + | * @param v the columns of this matrix will contain the eigenvectors. The eigenvectors are |
329 | + | * normalized and mutually orthogonal. |
330 | + | * @warning a will be overwritten |
331 | + | */ |
332 | + | static void diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w, SquareMatrix3<Real>& v); |
333 | + | }; |
334 | + | /*========================================================================= |
335 | + | |
336 | + | Program: Visualization Toolkit |
337 | + | Module: $RCSfile: SquareMatrix3.hpp,v $ |
338 | + | |
339 | + | Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen |
340 | + | All rights reserved. |
341 | + | See Copyright.txt or http://www.kitware.com/Copyright.htm for details. |
342 | + | |
343 | + | This software is distributed WITHOUT ANY WARRANTY; without even |
344 | + | the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR |
345 | + | PURPOSE. See the above copyright notice for more information. |
346 | + | |
347 | + | =========================================================================*/ |
348 | + | template<typename Real> |
349 | + | void SquareMatrix3<Real>::diagonalize(SquareMatrix3<Real>& a, Vector3<Real>& w, |
350 | + | SquareMatrix3<Real>& v) { |
351 | + | int i,j,k,maxI; |
352 | + | Real tmp, maxVal; |
353 | + | Vector3<Real> v_maxI, v_k, v_j; |
354 | + | |
355 | + | // diagonalize using Jacobi |
356 | + | jacobi(a, w, v); |
357 | + | // if all the eigenvalues are the same, return identity matrix |
358 | + | if (w[0] == w[1] && w[0] == w[2] ) { |
359 | + | v = SquareMatrix3<Real>::identity(); |
360 | + | return; |
361 | + | } |
362 | + | |
363 | + | // transpose temporarily, it makes it easier to sort the eigenvectors |
364 | + | v = v.transpose(); |
365 | + | |
366 | + | // if two eigenvalues are the same, re-orthogonalize to optimally line |
367 | + | // up the eigenvectors with the x, y, and z axes |
368 | + | for (i = 0; i < 3; i++) { |
369 | + | if (w((i+1)%3) == w((i+2)%3)) {// two eigenvalues are the same |
370 | + | // find maximum element of the independant eigenvector |
371 | + | maxVal = fabs(v(i, 0)); |
372 | + | maxI = 0; |
373 | + | for (j = 1; j < 3; j++) { |
374 | + | if (maxVal < (tmp = fabs(v(i, j)))){ |
375 | + | maxVal = tmp; |
376 | + | maxI = j; |
377 | + | } |
378 | + | } |
379 | + | |
380 | + | // swap the eigenvector into its proper position |
381 | + | if (maxI != i) { |
382 | + | tmp = w(maxI); |
383 | + | w(maxI) = w(i); |
384 | + | w(i) = tmp; |
385 | + | |
386 | + | v.swapRow(i, maxI); |
387 | + | } |
388 | + | // maximum element of eigenvector should be positive |
389 | + | if (v(maxI, maxI) < 0) { |
390 | + | v(maxI, 0) = -v(maxI, 0); |
391 | + | v(maxI, 1) = -v(maxI, 1); |
392 | + | v(maxI, 2) = -v(maxI, 2); |
393 | + | } |
394 | + | |
395 | + | // re-orthogonalize the other two eigenvectors |
396 | + | j = (maxI+1)%3; |
397 | + | k = (maxI+2)%3; |
398 | + | |
399 | + | v(j, 0) = 0.0; |
400 | + | v(j, 1) = 0.0; |
401 | + | v(j, 2) = 0.0; |
402 | + | v(j, j) = 1.0; |
403 | + | |
404 | + | /** @todo */ |
405 | + | v_maxI = v.getRow(maxI); |
406 | + | v_j = v.getRow(j); |
407 | + | v_k = cross(v_maxI, v_j); |
408 | + | v_k.normalize(); |
409 | + | v_j = cross(v_k, v_maxI); |
410 | + | v.setRow(j, v_j); |
411 | + | v.setRow(k, v_k); |
412 | + | |
413 | + | |
414 | + | // transpose vectors back to columns |
415 | + | v = v.transpose(); |
416 | + | return; |
417 | + | } |
418 | + | } |
419 | + | |
420 | + | // the three eigenvalues are different, just sort the eigenvectors |
421 | + | // to align them with the x, y, and z axes |
422 | + | |
423 | + | // find the vector with the largest x element, make that vector |
424 | + | // the first vector |
425 | + | maxVal = fabs(v(0, 0)); |
426 | + | maxI = 0; |
427 | + | for (i = 1; i < 3; i++) { |
428 | + | if (maxVal < (tmp = fabs(v(i, 0)))) { |
429 | + | maxVal = tmp; |
430 | + | maxI = i; |
431 | + | } |
432 | + | } |
433 | + | |
434 | + | // swap eigenvalue and eigenvector |
435 | + | if (maxI != 0) { |
436 | + | tmp = w(maxI); |
437 | + | w(maxI) = w(0); |
438 | + | w(0) = tmp; |
439 | + | v.swapRow(maxI, 0); |
440 | + | } |
441 | + | // do the same for the y element |
442 | + | if (fabs(v(1, 1)) < fabs(v(2, 1))) { |
443 | + | tmp = w(2); |
444 | + | w(2) = w(1); |
445 | + | w(1) = tmp; |
446 | + | v.swapRow(2, 1); |
447 | + | } |
448 | + | |
449 | + | // ensure that the sign of the eigenvectors is correct |
450 | + | for (i = 0; i < 2; i++) { |
451 | + | if (v(i, i) < 0) { |
452 | + | v(i, 0) = -v(i, 0); |
453 | + | v(i, 1) = -v(i, 1); |
454 | + | v(i, 2) = -v(i, 2); |
455 | + | } |
456 | + | } |
457 | + | |
458 | + | // set sign of final eigenvector to ensure that determinant is positive |
459 | + | if (v.determinant() < 0) { |
460 | + | v(2, 0) = -v(2, 0); |
461 | + | v(2, 1) = -v(2, 1); |
462 | + | v(2, 2) = -v(2, 2); |
463 | + | } |
464 | + | |
465 | + | // transpose the eigenvectors back again |
466 | + | v = v.transpose(); |
467 | + | return ; |
468 | } | |
469 | ||
470 | < | }; |
470 | > | /** |
471 | > | * Return the multiplication of two matrixes (m1 * m2). |
472 | > | * @return the multiplication of two matrixes |
473 | > | * @param m1 the first matrix |
474 | > | * @param m2 the second matrix |
475 | > | */ |
476 | > | template<typename Real> |
477 | > | inline SquareMatrix3<Real> operator *(const SquareMatrix3<Real>& m1, const SquareMatrix3<Real>& m2) { |
478 | > | SquareMatrix3<Real> result; |
479 | ||
480 | < | } |
481 | < | #endif // MATH_SQUAREMATRIX#_HPP |
480 | > | for (unsigned int i = 0; i < 3; i++) |
481 | > | for (unsigned int j = 0; j < 3; j++) |
482 | > | for (unsigned int k = 0; k < 3; k++) |
483 | > | result(i, j) += m1(i, k) * m2(k, j); |
484 | > | |
485 | > | return result; |
486 | > | } |
487 | > | |
488 | > | template<typename Real> |
489 | > | inline SquareMatrix3<Real> outProduct(const Vector3<Real>& v1, const Vector3<Real>& v2) { |
490 | > | SquareMatrix3<Real> result; |
491 | > | |
492 | > | for (unsigned int i = 0; i < 3; i++) { |
493 | > | for (unsigned int j = 0; j < 3; j++) { |
494 | > | result(i, j) = v1[i] * v2[j]; |
495 | > | } |
496 | > | } |
497 | > | |
498 | > | return result; |
499 | > | } |
500 | > | |
501 | > | |
502 | > | typedef SquareMatrix3<double> Mat3x3d; |
503 | > | typedef SquareMatrix3<double> RotMat3x3d; |
504 | > | |
505 | > | } //namespace oopse |
506 | > | #endif // MATH_SQUAREMATRIX_HPP |
507 | > |
– | Removed lines |
+ | Added lines |
< | Changed lines |
> | Changed lines |