| 1 | /* | 
| 2 | * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. | 
| 3 | * | 
| 4 | * The University of Notre Dame grants you ("Licensee") a | 
| 5 | * non-exclusive, royalty free, license to use, modify and | 
| 6 | * redistribute this software in source and binary code form, provided | 
| 7 | * that the following conditions are met: | 
| 8 | * | 
| 9 | * 1. Redistributions of source code must retain the above copyright | 
| 10 | *    notice, this list of conditions and the following disclaimer. | 
| 11 | * | 
| 12 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 13 | *    notice, this list of conditions and the following disclaimer in the | 
| 14 | *    documentation and/or other materials provided with the | 
| 15 | *    distribution. | 
| 16 | * | 
| 17 | * This software is provided "AS IS," without a warranty of any | 
| 18 | * kind. All express or implied conditions, representations and | 
| 19 | * warranties, including any implied warranty of merchantability, | 
| 20 | * fitness for a particular purpose or non-infringement, are hereby | 
| 21 | * excluded.  The University of Notre Dame and its licensors shall not | 
| 22 | * be liable for any damages suffered by licensee as a result of | 
| 23 | * using, modifying or distributing the software or its | 
| 24 | * derivatives. In no event will the University of Notre Dame or its | 
| 25 | * licensors be liable for any lost revenue, profit or data, or for | 
| 26 | * direct, indirect, special, consequential, incidental or punitive | 
| 27 | * damages, however caused and regardless of the theory of liability, | 
| 28 | * arising out of the use of or inability to use software, even if the | 
| 29 | * University of Notre Dame has been advised of the possibility of | 
| 30 | * such damages. | 
| 31 | * | 
| 32 | * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your | 
| 33 | * research, please cite the appropriate papers when you publish your | 
| 34 | * work.  Good starting points are: | 
| 35 | * | 
| 36 | * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). | 
| 37 | * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). | 
| 38 | * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). | 
| 39 | * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010). | 
| 40 | * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). | 
| 41 | */ | 
| 42 |  | 
| 43 | /** | 
| 44 | * @file Vector.hpp | 
| 45 | * @author Teng Lin | 
| 46 | * @date 09/14/2004 | 
| 47 | * @version 1.0 | 
| 48 | */ | 
| 49 |  | 
| 50 | #ifndef MATH_VECTOR_HPP | 
| 51 | #define MATH_VECTOR_HPP | 
| 52 |  | 
| 53 | #include <cassert> | 
| 54 | #include <cmath> | 
| 55 | #include <iostream> | 
| 56 | #include <math.h> | 
| 57 | #include "config.h" | 
| 58 | namespace OpenMD { | 
| 59 |  | 
| 60 | static const RealType epsilon = 0.000001; | 
| 61 |  | 
| 62 | template<typename T> | 
| 63 | inline bool equal(T e1, T e2) { | 
| 64 | return e1 == e2; | 
| 65 | } | 
| 66 |  | 
| 67 | //template<> | 
| 68 | //inline bool equal(float e1, float e2) { | 
| 69 | //  return fabs(e1 - e2) < epsilon; | 
| 70 | //} | 
| 71 |  | 
| 72 | template<> | 
| 73 | inline bool equal(RealType e1, RealType e2) { | 
| 74 | return fabs(e1 - e2) < epsilon; | 
| 75 | } | 
| 76 |  | 
| 77 | /** | 
| 78 | * @class Vector Vector.hpp "math/Vector.hpp" | 
| 79 | * @brief Fix length vector class | 
| 80 | */ | 
| 81 | template<typename Real, unsigned int Dim> | 
| 82 | class Vector{ | 
| 83 | public: | 
| 84 |  | 
| 85 | typedef Real ElemType; | 
| 86 | typedef Real* ElemPoinerType; | 
| 87 |  | 
| 88 | /** default constructor */ | 
| 89 | inline Vector(){ | 
| 90 | for (unsigned int i = 0; i < Dim; i++) | 
| 91 | this->data_[i] = 0; | 
| 92 | } | 
| 93 |  | 
| 94 | /** Constructs and initializes a Vector from a vector */ | 
| 95 | inline Vector(const Vector<Real, Dim>& v) { | 
| 96 | *this  = v; | 
| 97 | } | 
| 98 |  | 
| 99 | /** copy assignment operator */ | 
| 100 | inline Vector<Real, Dim>& operator=(const Vector<Real, Dim>& v) { | 
| 101 | if (this == &v) | 
| 102 | return *this; | 
| 103 |  | 
| 104 | for (unsigned int i = 0; i < Dim; i++) | 
| 105 | this->data_[i] = v[i]; | 
| 106 |  | 
| 107 | return *this; | 
| 108 | } | 
| 109 |  | 
| 110 | // template<typename T> | 
| 111 | // inline Vector(const T& s){ | 
| 112 | inline Vector(const Real& s) { | 
| 113 | for (unsigned int i = 0; i < Dim; i++) | 
| 114 | this->data_[i] = s; | 
| 115 | } | 
| 116 |  | 
| 117 | /** Constructs and initializes a Vector from an array */ | 
| 118 | inline Vector( Real* v) { | 
| 119 | for (unsigned int i = 0; i < Dim; i++) | 
| 120 | this->data_[i] = v[i]; | 
| 121 | } | 
| 122 |  | 
| 123 | /** | 
| 124 | * Returns reference of ith element. | 
| 125 | * @return reference of ith element | 
| 126 | * @param i index | 
| 127 | */ | 
| 128 | inline Real& operator[](unsigned int  i) { | 
| 129 | assert( i < Dim); | 
| 130 | return this->data_[i]; | 
| 131 | } | 
| 132 |  | 
| 133 | /** | 
| 134 | * Returns reference of ith element. | 
| 135 | * @return reference of ith element | 
| 136 | * @param i index | 
| 137 | */ | 
| 138 | inline Real& operator()(unsigned int  i) { | 
| 139 | assert( i < Dim); | 
| 140 | return this->data_[i]; | 
| 141 | } | 
| 142 |  | 
| 143 | /** | 
| 144 | * Returns constant reference of ith element. | 
| 145 | * @return reference of ith element | 
| 146 | * @param i index | 
| 147 | */ | 
| 148 | inline  const Real& operator[](unsigned int i) const { | 
| 149 | assert( i < Dim); | 
| 150 | return this->data_[i]; | 
| 151 | } | 
| 152 |  | 
| 153 | /** | 
| 154 | * Returns constant reference of ith element. | 
| 155 | * @return reference of ith element | 
| 156 | * @param i index | 
| 157 | */ | 
| 158 | inline  const Real& operator()(unsigned int i) const { | 
| 159 | assert( i < Dim); | 
| 160 | return this->data_[i]; | 
| 161 | } | 
| 162 |  | 
| 163 | /** Copy the internal data to an array*/ | 
| 164 | void getArray(Real* array) { | 
| 165 | for (unsigned int i = 0; i < Dim; i ++) { | 
| 166 | array[i] = this->data_[i]; | 
| 167 | } | 
| 168 | } | 
| 169 |  | 
| 170 | /** Returns the pointer of internal array */ | 
| 171 | Real* getArrayPointer() { | 
| 172 | return this->data_; | 
| 173 | } | 
| 174 |  | 
| 175 | /** | 
| 176 | * Tests if this vetor is equal to other vector | 
| 177 | * @return true if equal, otherwise return false | 
| 178 | * @param v vector to be compared | 
| 179 | */ | 
| 180 | inline bool operator ==(const Vector<Real, Dim>& v) { | 
| 181 |  | 
| 182 | for (unsigned int i = 0; i < Dim; i ++) { | 
| 183 | if (!equal(this->data_[i], v[i])) { | 
| 184 | return false; | 
| 185 | } | 
| 186 | } | 
| 187 |  | 
| 188 | return true; | 
| 189 | } | 
| 190 |  | 
| 191 | /** | 
| 192 | * Tests if this vetor is not equal to other vector | 
| 193 | * @return true if equal, otherwise return false | 
| 194 | * @param v vector to be compared | 
| 195 | */ | 
| 196 | inline bool operator !=(const Vector<Real, Dim>& v) { | 
| 197 | return !(*this == v); | 
| 198 | } | 
| 199 |  | 
| 200 | /** Negates the value of this vector in place. */ | 
| 201 | inline void negate() { | 
| 202 | for (unsigned int i = 0; i < Dim; i++) | 
| 203 | this->data_[i] = -this->data_[i]; | 
| 204 | } | 
| 205 |  | 
| 206 | /** | 
| 207 | * Sets the value of this vector to the negation of vector v1. | 
| 208 | * @param v1 the source vector | 
| 209 | */ | 
| 210 | inline void negate(const Vector<Real, Dim>& v1) { | 
| 211 | for (unsigned int i = 0; i < Dim; i++) | 
| 212 | this->data_[i] = -v1.data_[i]; | 
| 213 |  | 
| 214 | } | 
| 215 |  | 
| 216 | /** | 
| 217 | * Sets the value of this vector to the sum of itself and v1 (*this += v1). | 
| 218 | * @param v1 the other vector | 
| 219 | */ | 
| 220 | inline void add( const Vector<Real, Dim>& v1 ) { | 
| 221 | for (unsigned int i = 0; i < Dim; i++) | 
| 222 | this->data_[i] += v1.data_[i]; | 
| 223 | } | 
| 224 |  | 
| 225 | /** | 
| 226 | * Sets the value of this vector to the sum of v1 and v2 (*this = v1 + v2). | 
| 227 | * @param v1 the first vector | 
| 228 | * @param v2 the second vector | 
| 229 | */ | 
| 230 | inline void add( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) { | 
| 231 | for (unsigned int i = 0; i < Dim; i++) | 
| 232 | this->data_[i] = v1.data_[i] + v2.data_[i]; | 
| 233 | } | 
| 234 |  | 
| 235 | /** | 
| 236 | * Sets the value of this vector to the difference  of itself and v1 (*this -= v1). | 
| 237 | * @param v1 the other vector | 
| 238 | */ | 
| 239 | inline void sub( const Vector<Real, Dim>& v1 ) { | 
| 240 | for (unsigned int i = 0; i < Dim; i++) | 
| 241 | this->data_[i] -= v1.data_[i]; | 
| 242 | } | 
| 243 |  | 
| 244 | /** | 
| 245 | * Sets the value of this vector to the difference of vector v1 and v2 (*this = v1 - v2). | 
| 246 | * @param v1 the first vector | 
| 247 | * @param v2 the second vector | 
| 248 | */ | 
| 249 | inline void sub( const Vector<Real, Dim>& v1, const Vector  &v2 ){ | 
| 250 | for (unsigned int i = 0; i < Dim; i++) | 
| 251 | this->data_[i] = v1.data_[i] - v2.data_[i]; | 
| 252 | } | 
| 253 |  | 
| 254 | /** | 
| 255 | * Sets the value of this vector to the scalar multiplication of itself (*this *= s). | 
| 256 | * @param s the scalar value | 
| 257 | */ | 
| 258 | inline void mul( Real s ) { | 
| 259 | for (unsigned int i = 0; i < Dim; i++) | 
| 260 | this->data_[i] *= s; | 
| 261 | } | 
| 262 |  | 
| 263 | /** | 
| 264 | * Sets the value of this vector to the scalar multiplication of vector v1 | 
| 265 | * (*this = s * v1). | 
| 266 | * @param v1 the vector | 
| 267 | * @param s the scalar value | 
| 268 | */ | 
| 269 | inline void mul( const Vector<Real, Dim>& v1, Real s) { | 
| 270 | for (unsigned int i = 0; i < Dim; i++) | 
| 271 | this->data_[i] = s * v1.data_[i]; | 
| 272 | } | 
| 273 |  | 
| 274 | /** | 
| 275 | * Sets the elements of this vector to the multiplication of | 
| 276 | * elements of two other vectors.  Not to be confused with scalar | 
| 277 | * multiplication (mul) or dot products. | 
| 278 | * | 
| 279 | * (*this.data_[i] =  v1.data_[i] * v2.data_[i]). | 
| 280 | * @param v1 the first vector | 
| 281 | * @param v2 the second vector | 
| 282 | */ | 
| 283 | inline void Vmul( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2) { | 
| 284 | for (unsigned int i = 0; i < Dim; i++) | 
| 285 | this->data_[i] = v1.data_[i] * v2.data_[i]; | 
| 286 | } | 
| 287 |  | 
| 288 | /* replaces the elements with the absolute values of those elements */ | 
| 289 | inline Vector<Real, Dim>& abs() { | 
| 290 | for (unsigned int i = 0; i < Dim; i++) { | 
| 291 | this->data_[i] = std::abs(this->data_[i]); | 
| 292 | } | 
| 293 | return *this; | 
| 294 | } | 
| 295 |  | 
| 296 | /* returns the maximum value in this vector */ | 
| 297 | inline Real max() { | 
| 298 | Real val = this->data_[0]; | 
| 299 | for (unsigned int i = 0; i < Dim; i++) { | 
| 300 | if (this->data_[i] > val) val = this->data_[i]; | 
| 301 | } | 
| 302 | return val; | 
| 303 | } | 
| 304 |  | 
| 305 | /** | 
| 306 | * Sets the value of this vector to the scalar division of itself  (*this /= s ). | 
| 307 | * @param s the scalar value | 
| 308 | */ | 
| 309 | inline void div( Real s) { | 
| 310 | for (unsigned int i = 0; i < Dim; i++) | 
| 311 | this->data_[i] /= s; | 
| 312 | } | 
| 313 |  | 
| 314 | /** | 
| 315 | * Sets the value of this vector to the scalar division of vector v1  (*this = v1 / s ). | 
| 316 | * @param v1 the source vector | 
| 317 | * @param s the scalar value | 
| 318 | */ | 
| 319 | inline void div( const Vector<Real, Dim>& v1, Real s ) { | 
| 320 | for (unsigned int i = 0; i < Dim; i++) | 
| 321 | this->data_[i] = v1.data_[i] / s; | 
| 322 | } | 
| 323 |  | 
| 324 | /** | 
| 325 | * Sets the elements of this vector to the division of | 
| 326 | * elements of two other vectors.  Not to be confused with scalar | 
| 327 | * division (div) | 
| 328 | * | 
| 329 | * (*this.data_[i] =  v1.data_[i] / v2.data_[i]). | 
| 330 | * @param v1 the first vector | 
| 331 | * @param v2 the second vector | 
| 332 | */ | 
| 333 | inline void Vdiv( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2) { | 
| 334 | for (unsigned int i = 0; i < Dim; i++) | 
| 335 | this->data_[i] = v1.data_[i] / v2.data_[i]; | 
| 336 | } | 
| 337 |  | 
| 338 |  | 
| 339 | /** @see #add */ | 
| 340 | inline Vector<Real, Dim>& operator +=( const Vector<Real, Dim>& v1 ) { | 
| 341 | add(v1); | 
| 342 | return *this; | 
| 343 | } | 
| 344 |  | 
| 345 | /** @see #sub */ | 
| 346 | inline Vector<Real, Dim>& operator -=( const Vector<Real, Dim>& v1 ) { | 
| 347 | sub(v1); | 
| 348 | return *this; | 
| 349 | } | 
| 350 |  | 
| 351 | /** @see #mul */ | 
| 352 | inline Vector<Real, Dim>& operator *=( Real s) { | 
| 353 | mul(s); | 
| 354 | return *this; | 
| 355 | } | 
| 356 |  | 
| 357 | /** @see #div */ | 
| 358 | inline Vector<Real, Dim>& operator /=( Real s ) { | 
| 359 | div(s); | 
| 360 | return *this; | 
| 361 | } | 
| 362 |  | 
| 363 | /** | 
| 364 | * Returns the sum of all elements of this vector. | 
| 365 | * @return the sum of all elements of this vector | 
| 366 | */ | 
| 367 | inline Real sum() { | 
| 368 | Real tmp; | 
| 369 | tmp = 0; | 
| 370 | for (unsigned int i = 0; i < Dim; i++) | 
| 371 | tmp += this->data_[i]; | 
| 372 | return tmp; | 
| 373 | } | 
| 374 |  | 
| 375 | /** | 
| 376 | * Returns the product of all elements of this vector. | 
| 377 | * @return the product of all elements of this vector | 
| 378 | */ | 
| 379 | inline Real componentProduct() { | 
| 380 | Real tmp; | 
| 381 | tmp = 1; | 
| 382 | for (unsigned int i = 0; i < Dim; i++) | 
| 383 | tmp *= this->data_[i]; | 
| 384 | return tmp; | 
| 385 | } | 
| 386 |  | 
| 387 | /** | 
| 388 | * Returns the length of this vector. | 
| 389 | * @return the length of this vector | 
| 390 | */ | 
| 391 | inline Real length() { | 
| 392 | return sqrt(lengthSquare()); | 
| 393 | } | 
| 394 |  | 
| 395 | /** | 
| 396 | * Returns the squared length of this vector. | 
| 397 | * @return the squared length of this vector | 
| 398 | */ | 
| 399 | inline Real lengthSquare() { | 
| 400 | return dot(*this, *this); | 
| 401 | } | 
| 402 |  | 
| 403 | /** Normalizes this vector in place */ | 
| 404 | inline void normalize() { | 
| 405 | Real len; | 
| 406 |  | 
| 407 | len = length(); | 
| 408 |  | 
| 409 | //if (len < OpenMD::NumericConstant::epsilon) | 
| 410 | //  throw(); | 
| 411 |  | 
| 412 | *this /= len; | 
| 413 | } | 
| 414 |  | 
| 415 | /** | 
| 416 | * Tests if this vector is normalized | 
| 417 | * @return true if this vector is normalized, otherwise return false | 
| 418 | */ | 
| 419 | inline bool isNormalized() { | 
| 420 | return equal(lengthSquare(), (RealType)1); | 
| 421 | } | 
| 422 |  | 
| 423 | unsigned int size() {return Dim;} | 
| 424 | protected: | 
| 425 | Real data_[Dim]; | 
| 426 |  | 
| 427 | }; | 
| 428 |  | 
| 429 | /** unary minus*/ | 
| 430 | template<typename Real, unsigned int Dim> | 
| 431 | inline Vector<Real, Dim> operator -(const Vector<Real, Dim>& v1){ | 
| 432 | Vector<Real, Dim> tmp(v1); | 
| 433 | tmp.negate(); | 
| 434 | return tmp; | 
| 435 | } | 
| 436 |  | 
| 437 | /** | 
| 438 | * Return the sum of two vectors  (v1 - v2). | 
| 439 | * @return the sum of two vectors | 
| 440 | * @param v1 the first vector | 
| 441 | * @param v2 the second vector | 
| 442 | */ | 
| 443 | template<typename Real, unsigned int Dim> | 
| 444 | inline Vector<Real, Dim> operator +(const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2) { | 
| 445 | Vector<Real, Dim> result; | 
| 446 |  | 
| 447 | result.add(v1, v2); | 
| 448 | return result; | 
| 449 | } | 
| 450 |  | 
| 451 | /** | 
| 452 | * Return the difference of two vectors  (v1 - v2). | 
| 453 | * @return the difference of two vectors | 
| 454 | * @param v1 the first vector | 
| 455 | * @param v2 the second vector | 
| 456 | */ | 
| 457 | template<typename Real, unsigned int Dim> | 
| 458 | Vector<Real, Dim> operator -(const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2) { | 
| 459 | Vector<Real, Dim> result; | 
| 460 | result.sub(v1, v2); | 
| 461 | return result; | 
| 462 | } | 
| 463 |  | 
| 464 | /** | 
| 465 | * Returns the vaule of scalar multiplication of this vector v1 (v1 * r). | 
| 466 | * @return  the vaule of scalar multiplication of this vector | 
| 467 | * @param v1 the source vector | 
| 468 | * @param s the scalar value | 
| 469 | */ | 
| 470 | template<typename Real, unsigned int Dim> | 
| 471 | Vector<Real, Dim> operator * ( const Vector<Real, Dim>& v1, Real s) { | 
| 472 | Vector<Real, Dim> result; | 
| 473 | result.mul(v1,s); | 
| 474 | return result; | 
| 475 | } | 
| 476 |  | 
| 477 | /** | 
| 478 | * Returns the vaule of scalar multiplication of this vector v1 (v1 * r). | 
| 479 | * @return  the vaule of scalar multiplication of this vector | 
| 480 | * @param s the scalar value | 
| 481 | * @param v1 the source vector | 
| 482 | */ | 
| 483 | template<typename Real, unsigned int Dim> | 
| 484 | Vector<Real, Dim> operator * ( Real s, const Vector<Real, Dim>& v1 ) { | 
| 485 | Vector<Real, Dim> result; | 
| 486 | result.mul(v1, s); | 
| 487 | return result; | 
| 488 | } | 
| 489 |  | 
| 490 | /** | 
| 491 | * Returns the  value of division of a vector by a scalar. | 
| 492 | * @return  the vaule of scalar division of this vector | 
| 493 | * @param v1 the source vector | 
| 494 | * @param s the scalar value | 
| 495 | */ | 
| 496 | template<typename Real, unsigned int Dim> | 
| 497 | Vector<Real, Dim> operator / ( const Vector<Real, Dim>& v1, Real s) { | 
| 498 | Vector<Real, Dim> result; | 
| 499 | result.div( v1,s); | 
| 500 | return result; | 
| 501 | } | 
| 502 |  | 
| 503 | /** | 
| 504 | * Returns the dot product of two Vectors | 
| 505 | * @param v1 first vector | 
| 506 | * @param v2 second vector | 
| 507 | * @return the dot product of v1 and v2 | 
| 508 | */ | 
| 509 | template<typename Real, unsigned int Dim> | 
| 510 | inline Real dot( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) { | 
| 511 | Real tmp; | 
| 512 | tmp = 0; | 
| 513 |  | 
| 514 | for (unsigned int i = 0; i < Dim; i++) | 
| 515 | tmp += v1[i] * v2[i]; | 
| 516 |  | 
| 517 | return tmp; | 
| 518 | } | 
| 519 |  | 
| 520 |  | 
| 521 |  | 
| 522 |  | 
| 523 | /** | 
| 524 | * Returns the wide dot product of three Vectors.  Compare with | 
| 525 | * Rapaport's VWDot function. | 
| 526 | * | 
| 527 | * @param v1 first vector | 
| 528 | * @param v2 second vector | 
| 529 | * @param v3 third vector | 
| 530 | * @return the wide dot product of v1, v2, and v3. | 
| 531 | */ | 
| 532 | template<typename Real, unsigned int Dim> | 
| 533 | inline Real dot( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2, const Vector<Real, Dim>& v3 ) { | 
| 534 | Real tmp; | 
| 535 | tmp = 0; | 
| 536 |  | 
| 537 | for (unsigned int i = 0; i < Dim; i++) | 
| 538 | tmp += v1[i] * v2[i] * v3[i]; | 
| 539 |  | 
| 540 | return tmp; | 
| 541 | } | 
| 542 |  | 
| 543 |  | 
| 544 | /** | 
| 545 | * Returns the distance between  two Vectors | 
| 546 | * @param v1 first vector | 
| 547 | * @param v2 second vector | 
| 548 | * @return the distance between v1 and v2 | 
| 549 | */ | 
| 550 | template<typename Real, unsigned int Dim> | 
| 551 | inline Real distance( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) { | 
| 552 | Vector<Real, Dim> tempVector = v1 - v2; | 
| 553 | return tempVector.length(); | 
| 554 | } | 
| 555 |  | 
| 556 | /** | 
| 557 | * Returns the squared distance between  two Vectors | 
| 558 | * @param v1 first vector | 
| 559 | * @param v2 second vector | 
| 560 | * @return the squared distance between v1 and v2 | 
| 561 | */ | 
| 562 | template<typename Real, unsigned int Dim> | 
| 563 | inline Real distanceSquare( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) { | 
| 564 | Vector<Real, Dim> tempVector = v1 - v2; | 
| 565 | return tempVector.lengthSquare(); | 
| 566 | } | 
| 567 |  | 
| 568 | /** | 
| 569 | * Write to an output stream | 
| 570 | */ | 
| 571 | template<typename Real, unsigned int Dim> | 
| 572 | std::ostream &operator<< ( std::ostream& o, const Vector<Real, Dim>& v) { | 
| 573 |  | 
| 574 | o << "[ "; | 
| 575 |  | 
| 576 | for (unsigned int i = 0 ; i< Dim; i++) { | 
| 577 | o << v[i]; | 
| 578 |  | 
| 579 | if (i  != Dim -1) { | 
| 580 | o<< ", "; | 
| 581 | } | 
| 582 | } | 
| 583 |  | 
| 584 | o << " ]"; | 
| 585 | return o; | 
| 586 | } | 
| 587 |  | 
| 588 | } | 
| 589 | #endif |