| 55 |  | inline bool equal(double e1, double e2) { | 
| 56 |  | return fabs(e1 - e2) < epsilon; | 
| 57 |  | } | 
| 58 | + |  | 
| 59 |  |  | 
| 60 |  | /** | 
| 61 |  | * @class Vector Vector.hpp "math/Vector.hpp" | 
| 86 |  |  | 
| 87 |  | return *this; | 
| 88 |  | } | 
| 89 | + |  | 
| 90 | + | template<typename T> | 
| 91 | + | inline Vector(const T& s){ | 
| 92 | + | for (unsigned int i = 0; i < Dim; i++) | 
| 93 | + | data_[i] = s; | 
| 94 | + | } | 
| 95 |  |  | 
| 96 |  | /** Constructs and initializes a Vector from an array */ | 
| 97 | < | inline Vector( double* v) { | 
| 97 | > | inline Vector( Real* v) { | 
| 98 |  | for (unsigned int i = 0; i < Dim; i++) | 
| 99 |  | data_[i] = v[i]; | 
| 100 |  | } | 
| 104 |  | * @return reference of ith element | 
| 105 |  | * @param i index | 
| 106 |  | */ | 
| 107 | < | inline double& operator[](unsigned int  i) { | 
| 107 | > | inline Real& operator[](unsigned int  i) { | 
| 108 |  | assert( i < Dim); | 
| 109 |  | return data_[i]; | 
| 110 |  | } | 
| 114 |  | * @return reference of ith element | 
| 115 |  | * @param i index | 
| 116 |  | */ | 
| 117 | < | inline double& operator()(unsigned int  i) { | 
| 117 | > | inline Real& operator()(unsigned int  i) { | 
| 118 |  | assert( i < Dim); | 
| 119 |  | return data_[i]; | 
| 120 |  | } | 
| 124 |  | * @return reference of ith element | 
| 125 |  | * @param i index | 
| 126 |  | */ | 
| 127 | < | inline  const double& operator[](unsigned int i) const { | 
| 127 | > | inline  const Real& operator[](unsigned int i) const { | 
| 128 |  | assert( i < Dim); | 
| 129 |  | return data_[i]; | 
| 130 |  | } | 
| 134 |  | * @return reference of ith element | 
| 135 |  | * @param i index | 
| 136 |  | */ | 
| 137 | < | inline  const double& operator()(unsigned int i) const { | 
| 137 | > | inline  const Real& operator()(unsigned int i) const { | 
| 138 |  | assert( i < Dim); | 
| 139 |  | return data_[i]; | 
| 140 |  | } | 
| 166 |  |  | 
| 167 |  | /** Negates the value of this vector in place. */ | 
| 168 |  | inline void negate() { | 
| 169 | < | data_[0] = -data_[0]; | 
| 170 | < | data_[1] = -data_[1]; | 
| 164 | < | data_[2] = -data_[2]; | 
| 169 | > | for (unsigned int i = 0; i < Dim; i++) | 
| 170 | > | data_[i] = -data_[i]; | 
| 171 |  | } | 
| 172 |  |  | 
| 173 |  | /** | 
| 185 |  | * @param v1 the other vector | 
| 186 |  | */ | 
| 187 |  | inline void add( const Vector<Real, Dim>& v1 ) { | 
| 188 | < | for (unsigned int i = 0; i < Dim; i++) | 
| 189 | < | data_[i] += v1.data_[i]; | 
| 190 | < | } | 
| 188 | > | for (unsigned int i = 0; i < Dim; i++) | 
| 189 | > | data_[i] += v1.data_[i]; | 
| 190 | > | } | 
| 191 |  |  | 
| 192 |  | /** | 
| 193 |  | * Sets the value of this vector to the sum of v1 and v2 (*this = v1 + v2). | 
| 222 |  | * Sets the value of this vector to the scalar multiplication of itself (*this *= s). | 
| 223 |  | * @param s the scalar value | 
| 224 |  | */ | 
| 225 | < | inline void mul( double s ) { | 
| 225 | > | inline void mul( Real s ) { | 
| 226 |  | for (unsigned int i = 0; i < Dim; i++) | 
| 227 |  | data_[i] *= s; | 
| 228 |  | } | 
| 230 |  | /** | 
| 231 |  | * Sets the value of this vector to the scalar multiplication of vector v1 | 
| 232 |  | * (*this = s * v1). | 
| 233 | + | * @param v1 the vector | 
| 234 |  | * @param s the scalar value | 
| 228 | – | * @param v1 the vector | 
| 235 |  | */ | 
| 236 | < | inline void mul( double s, const Vector<Real, Dim>& v1 ) { | 
| 236 | > | inline void mul( const Vector<Real, Dim>& v1, Real s) { | 
| 237 |  | for (unsigned int i = 0; i < Dim; i++) | 
| 238 |  | data_[i] = s * v1.data_[i]; | 
| 239 |  | } | 
| 242 |  | * Sets the value of this vector to the scalar division of itself  (*this /= s ). | 
| 243 |  | * @param s the scalar value | 
| 244 |  | */ | 
| 245 | < | inline void div( double s) { | 
| 245 | > | inline void div( Real s) { | 
| 246 |  | for (unsigned int i = 0; i < Dim; i++) | 
| 247 |  | data_[i] /= s; | 
| 248 |  | } | 
| 252 |  | * @param v1 the source vector | 
| 253 |  | * @param s the scalar value | 
| 254 |  | */ | 
| 255 | < | inline void div( const Vector<Real, Dim>& v1, double s ) { | 
| 255 | > | inline void div( const Vector<Real, Dim>& v1, Real s ) { | 
| 256 |  | for (unsigned int i = 0; i < Dim; i++) | 
| 257 |  | data_[i] = v1.data_[i] / s; | 
| 258 |  | } | 
| 270 |  | } | 
| 271 |  |  | 
| 272 |  | /** @see #mul */ | 
| 273 | < | inline Vector<Real, Dim>& operator *=( double s) { | 
| 273 | > | inline Vector<Real, Dim>& operator *=( Real s) { | 
| 274 |  | mul(s); | 
| 275 |  | return *this; | 
| 276 |  | } | 
| 277 |  |  | 
| 278 |  | /** @see #div */ | 
| 279 | < | inline Vector<Real, Dim>& operator /=( double s ) { | 
| 279 | > | inline Vector<Real, Dim>& operator /=( Real s ) { | 
| 280 |  | div(s); | 
| 281 |  | return *this; | 
| 282 |  | } | 
| 285 |  | * Returns the length of this vector. | 
| 286 |  | * @return the length of this vector | 
| 287 |  | */ | 
| 288 | < | inline double length() { | 
| 289 | < | return sqrt(lengthSquared()); | 
| 288 | > | inline Real length() { | 
| 289 | > | return sqrt(lengthSquare()); | 
| 290 |  | } | 
| 291 |  |  | 
| 292 |  | /** | 
| 293 |  | * Returns the squared length of this vector. | 
| 294 |  | * @return the squared length of this vector | 
| 295 |  | */ | 
| 296 | < | inline double lengthSquare() { | 
| 296 | > | inline Real lengthSquare() { | 
| 297 |  | return dot(*this, *this); | 
| 298 |  | } | 
| 299 |  |  | 
| 300 |  | /** Normalizes this vector in place */ | 
| 301 |  | inline void normalize() { | 
| 302 | < | double len; | 
| 302 | > | Real len; | 
| 303 |  |  | 
| 304 |  | len = length(); | 
| 305 | + |  | 
| 306 | + | //if (len < oopse:epsilon) | 
| 307 | + | //  throw(); | 
| 308 | + |  | 
| 309 |  | *this /= len; | 
| 310 |  | } | 
| 311 |  |  | 
| 313 |  | * Tests if this vector is normalized | 
| 314 |  | * @return true if this vector is normalized, otherwise return false | 
| 315 |  | */ | 
| 316 | < | inline bool isNormalized() const | 
| 317 | < | { | 
| 308 | < | return lengthSquare() == 1.0; | 
| 316 | > | inline bool isNormalized() { | 
| 317 | > | return equal(lengthSquare(), 1.0); | 
| 318 |  | } | 
| 319 |  |  | 
| 320 |  | protected: | 
| 321 | < | double data_[3]; | 
| 321 | > | Real data_[Dim]; | 
| 322 |  |  | 
| 323 |  | }; | 
| 324 |  |  | 
| 325 |  | /** unary minus*/ | 
| 326 |  | template<typename Real, unsigned int Dim> | 
| 327 |  | inline Vector<Real, Dim> operator -(const Vector<Real, Dim>& v1){ | 
| 328 | < | Vector tmp(v1); | 
| 329 | < | return tmp.negate(); | 
| 328 | > | Vector<Real, Dim> tmp(v1); | 
| 329 | > | tmp.negate(); | 
| 330 | > | return tmp; | 
| 331 |  | } | 
| 332 |  |  | 
| 333 |  | /** | 
| 364 |  | * @param s the scalar value | 
| 365 |  | */ | 
| 366 |  | template<typename Real, unsigned int Dim> | 
| 367 | < | Vector<Real, Dim> operator * ( const Vector<Real, Dim>& v1, double s) { | 
| 367 | > | Vector<Real, Dim> operator * ( const Vector<Real, Dim>& v1, Real s) { | 
| 368 |  | Vector<Real, Dim> result; | 
| 369 | < | result.mul(s, v1); | 
| 369 | > | result.mul(v1,s); | 
| 370 |  | return result; | 
| 371 |  | } | 
| 372 |  |  | 
| 377 |  | * @param v1 the source vector | 
| 378 |  | */ | 
| 379 |  | template<typename Real, unsigned int Dim> | 
| 380 | < | Vector<Real, Dim> operator * ( double s, const Vector<Real, Dim>& v1 ) { | 
| 380 | > | Vector<Real, Dim> operator * ( Real s, const Vector<Real, Dim>& v1 ) { | 
| 381 |  | Vector<Real, Dim> result; | 
| 382 | < | result.mul(s, v1); | 
| 382 | > | result.mul(v1, s); | 
| 383 |  | return result; | 
| 384 |  | } | 
| 385 |  |  | 
| 390 |  | * @param s the scalar value | 
| 391 |  | */ | 
| 392 |  | template<typename Real, unsigned int Dim> | 
| 393 | < | Vector<Real, Dim> operator / ( const Vector<Real, Dim>& v1, double s) { | 
| 393 | > | Vector<Real, Dim> operator / ( const Vector<Real, Dim>& v1, Real s) { | 
| 394 |  | Vector<Real, Dim> result; | 
| 395 |  | result.div( v1,s); | 
| 396 |  | return result; | 
| 397 |  | } | 
| 398 |  |  | 
| 399 |  | /** | 
| 390 | – | * Returns the  value of division of a vector by a scalar. | 
| 391 | – | * @return  the vaule of scalar division of this vector | 
| 392 | – | * @param s the scalar value | 
| 393 | – | * @param v1 the source vector | 
| 394 | – | */ | 
| 395 | – | template<typename Real, unsigned int Dim> | 
| 396 | – | inline Vector<Real, Dim> operator /( double s, const Vector<Real, Dim>& v1 ) { | 
| 397 | – | Vector<Real, Dim> result; | 
| 398 | – | result.div( v1,s); | 
| 399 | – | return result; | 
| 400 | – | } | 
| 401 | – |  | 
| 402 | – | /** fuzzy comparson */ | 
| 403 | – | template<typename Real, unsigned int Dim> | 
| 404 | – | inline bool epsilonEqual( const Vector<Real, Dim>& v1, const Vector<Real, Dim>& v2 ) { | 
| 405 | – |  | 
| 406 | – | } | 
| 407 | – |  | 
| 408 | – |  | 
| 409 | – | /** | 
| 400 |  | * Returns the dot product of two Vectors | 
| 401 |  | * @param v1 first vector | 
| 402 |  | * @param v2 second vector | 
| 408 |  | tmp = 0; | 
| 409 |  |  | 
| 410 |  | for (unsigned int i = 0; i < Dim; i++) | 
| 411 | < | tmp += v1[i] + v2[i]; | 
| 411 | > | tmp += v1[i] * v2[i]; | 
| 412 |  |  | 
| 413 |  | return tmp; | 
| 414 |  | } | 
| 443 |  | template<typename Real, unsigned int Dim> | 
| 444 |  | std::ostream &operator<< ( std::ostream& o, const Vector<Real, Dim>& v) { | 
| 445 |  |  | 
| 446 | < | o << "[" << v[0] << ", " << v[1] << ", " << v[2] << "]" << endl; | 
| 446 | > | o << "[ "; | 
| 447 | > |  | 
| 448 | > | for (unsigned int i = 0 ; i< Dim; i++) { | 
| 449 | > | o << v[i]; | 
| 450 | > |  | 
| 451 | > | if (i  != Dim -1) { | 
| 452 | > | o<< ", "; | 
| 453 | > | } | 
| 454 | > | } | 
| 455 | > |  | 
| 456 | > | o << " ]"; | 
| 457 |  | return o; | 
| 458 |  | } | 
| 459 |  |  |