| 1 | gezelter | 1600 | /* | 
| 2 |  |  | * Matpack Wigner3jm special function imported and modified for use in | 
| 3 |  |  | * OpenMD | 
| 4 |  |  | * | 
| 5 |  |  | * Matpack Library Release 1.9.0 | 
| 6 |  |  | * Copyright (C) 1991-2003 by Berndt M. Gammel. All rights reserved. | 
| 7 |  |  | * | 
| 8 |  |  | * Permission to use, copy, and distribute Matpack in its entirety | 
| 9 |  |  | * and its documentation for non-commercial purpose and without fee | 
| 10 |  |  | * is hereby granted, provided that this license information and | 
| 11 |  |  | * copyright notice appear unmodified in all copies.  This software | 
| 12 |  |  | * is provided 'as is' without express or implied warranty.  In no | 
| 13 |  |  | * event will the author be held liable for any damages arising from | 
| 14 |  |  | * the use of this software. | 
| 15 |  |  | * | 
| 16 |  |  | * Note that distributing Matpack 'bundled' in with any product is | 
| 17 |  |  | * considered to be a 'commercial purpose'. | 
| 18 |  |  | * | 
| 19 |  |  | * The software may be modified for your own purposes, but modified | 
| 20 |  |  | * versions may not be distributed without prior consent of the | 
| 21 |  |  | * author. | 
| 22 |  |  | * | 
| 23 |  |  | * Read the COPYRIGHT and README files in this distribution about | 
| 24 |  |  | * registration and installation of Matpack. | 
| 25 |  |  | */ | 
| 26 |  |  |  | 
| 27 |  |  | #include "Wigner3jm.hpp" | 
| 28 |  |  | #include <cmath> | 
| 29 |  |  | #include <cfloat> | 
| 30 |  |  | #include <cstdio> | 
| 31 |  |  | #include "utils/simError.h" | 
| 32 |  |  |  | 
| 33 |  |  | namespace MATPACK { | 
| 34 |  |  |  | 
| 35 |  |  | //-----------------------------------------------------------------------------// | 
| 36 |  |  | // | 
| 37 |  |  | // void ThreeJSymbolM (RealType l1, RealType l2, RealType l3, RealType m1, | 
| 38 |  |  | //                     RealType &m2min, RealType &m2max, RealType *thrcof, int ndim, | 
| 39 |  |  | //                     int &errflag) | 
| 40 |  |  | // | 
| 41 |  |  | // Evaluate the Wigner 3j symbol | 
| 42 |  |  | // | 
| 43 |  |  | //       g(m2) = ( l1  l2     l3  ) | 
| 44 |  |  | //               ( m1  m2  -m1-m2 ) | 
| 45 |  |  | // | 
| 46 |  |  | // for all allowed values of m2, the other parameters being held fixed. | 
| 47 |  |  | // | 
| 48 |  |  | // Input Arguments: | 
| 49 |  |  | // ---------------- | 
| 50 |  |  | // | 
| 51 |  |  | //   RealType l1 | 
| 52 |  |  | //   RealType l2 | 
| 53 |  |  | //   RealType l3 | 
| 54 |  |  | //   RealType m1        Parameters in 3j symbol. | 
| 55 |  |  | // | 
| 56 |  |  | //   int  ndim          Declared length of thrcof in calling program. | 
| 57 |  |  | // | 
| 58 |  |  | // Output Arguments: | 
| 59 |  |  | // ----------------- | 
| 60 |  |  | // | 
| 61 |  |  | //   RealType &m2min    Smallest allowable m2 in 3j symbol. | 
| 62 |  |  | //   RealType &m2max    Largest allowable m2 in 3j symbol. | 
| 63 |  |  | //   RealType *thrcof   Set of 3j coefficients generated by evaluating the | 
| 64 |  |  | //                      3j symbol for all allowed values of m2.  thrcof(i) | 
| 65 |  |  | //                      will contain g(m2min+i), i=0,2,...,m2max-m2min. | 
| 66 |  |  | // | 
| 67 |  |  | //   int &errflag       Error flag. | 
| 68 |  |  | //                      errflag=0  No errors. | 
| 69 |  |  | //                      errflag=1  Either l1 < abs(m1) or l1+abs(m1) non-integer. | 
| 70 |  |  | //                      errflag=2  abs(l1-l2)<= l3 <= l1+l2 not satisfied. | 
| 71 |  |  | //                      errflag=3  l1+l2+l3 not an integer. | 
| 72 |  |  | //                      errflag=4  m2max-m2min not an integer. | 
| 73 |  |  | //                      errflag=5  m2max less than m2min. | 
| 74 |  |  | //                      errflag=6  ndim less than m2max-m2min+1. | 
| 75 |  |  | // Description: | 
| 76 |  |  | // ------------ | 
| 77 |  |  | // | 
| 78 |  |  | // Although conventionally the parameters of the vector addition | 
| 79 |  |  | // coefficients satisfy certain restrictions, such as being integers | 
| 80 |  |  | // or integers plus 1/2, the restrictions imposed on input to this | 
| 81 |  |  | // subroutine are somewhat weaker. See, for example, Section 27.9 of | 
| 82 |  |  | // Abramowitz and Stegun or Appendix C of Volume II of A. Messiah. | 
| 83 |  |  | // | 
| 84 |  |  | // The restrictions imposed by this subroutine are | 
| 85 |  |  | // | 
| 86 |  |  | //       1. l1 >= abs(m1) and l1+abs(m1) must be an integer | 
| 87 |  |  | //       2. abs(l1-l2) <= l3 <= l1+l2 | 
| 88 |  |  | //       3. l1+l2+l3 must be an integer | 
| 89 |  |  | //       4. m2max-m2min must be an integer, where | 
| 90 |  |  | //          m2max=min(l2,l3-m1) and m2min=max(-l2,-l3-m1) | 
| 91 |  |  | // | 
| 92 |  |  | // If the conventional restrictions are satisfied, then these | 
| 93 |  |  | // restrictions are also met. | 
| 94 |  |  | // | 
| 95 |  |  | // The user should be cautious in using input parameters that do | 
| 96 |  |  | // not satisfy the conventional restrictions. For example, the | 
| 97 |  |  | // the subroutine produces values of | 
| 98 |  |  | //       g(m2) = (0.75 1.50   1.75  ) | 
| 99 |  |  | //               (0.25  m2  -0.25-m2) | 
| 100 |  |  | // for m2=-1.5,-0.5,0.5,1.5 but none of the symmetry properties of the | 
| 101 |  |  | // 3j symbol, set forth on page 1056 of Messiah, is satisfied. | 
| 102 |  |  | // | 
| 103 |  |  | // The subroutine generates g(m2min), g(m2min+1), ..., g(m2max) | 
| 104 |  |  | // where m2min and m2max are defined above. The sequence g(m2) is | 
| 105 |  |  | // generated by a three-term recurrence algorithm with scaling to | 
| 106 |  |  | // control overflow. Both backward and forward recurrence are used to | 
| 107 |  |  | // maintain numerical stability. The two recurrence sequences are | 
| 108 |  |  | // matched at an interior point and are normalized from the unitary | 
| 109 |  |  | // property of 3j coefficients and Wigner's phase convention. | 
| 110 |  |  | // | 
| 111 |  |  | // The algorithm is suited to applications in which large quantum | 
| 112 |  |  | // numbers arise, such as in molecular dynamics. | 
| 113 |  |  | // | 
| 114 |  |  | // References: | 
| 115 |  |  | // ----------- | 
| 116 |  |  | //  1. Abramowitz, M., and Stegun, I. A., Eds., Handbook | 
| 117 |  |  | //     of Mathematical Functions with Formulas, Graphs | 
| 118 |  |  | //     and Mathematical Tables, NBS Applied Mathematics | 
| 119 |  |  | //     Series 55, June 1964 and subsequent printings. | 
| 120 |  |  | //  2. Messiah, Albert., Quantum Mechanics, Volume II, | 
| 121 |  |  | //     North-Holland Publishing Company, 1963. | 
| 122 |  |  | //  3. Schulten, Klaus and Gordon, Roy G., Exact recursive | 
| 123 |  |  | //     evaluation of 3j and 6j coefficients for quantum- | 
| 124 |  |  | //     mechanical coupling of angular momenta, J Math | 
| 125 |  |  | //     Phys, v 16, no. 10, October 1975, pp. 1961-1970. | 
| 126 |  |  | //  4. Schulten, Klaus and Gordon, Roy G., Semiclassical | 
| 127 |  |  | //     approximations to 3j  and 6j coefficients for | 
| 128 |  |  | //     quantum-mechanical coupling of angular momenta, | 
| 129 |  |  | //     J Math Phys, v 16, no. 10, October 1975, pp. 1971-1988. | 
| 130 |  |  | //  5. Schulten, Klaus and Gordon, Roy G., Recursive | 
| 131 |  |  | //     evaluation of 3j and 6j coefficients, Computer | 
| 132 |  |  | //     Phys Comm, v 11, 1976, pp. 269-278. | 
| 133 |  |  | //  6. SLATEC library, category  C19, | 
| 134 |  |  | //     double precision algorithm DRC3JM.F | 
| 135 |  |  | //     Keywords: 3j coefficients, 3j symbols, Clebsch-Gordan coefficients, | 
| 136 |  |  | //               Racah coefficients, vector addition coefficients, | 
| 137 |  |  | //               Wigner coefficients | 
| 138 |  |  | //     Author:   Gordon, R. G., Harvard University | 
| 139 |  |  | //               Schulten, K., Max Planck Institute | 
| 140 |  |  | //     Revision history  (YYMMDD) | 
| 141 |  |  | //     750101  DATE WRITTEN | 
| 142 |  |  | //     880515  SLATEC prologue added by G. C. Nielson, NBS; parameters | 
| 143 |  |  | //             HUGE and TINY revised to depend on D1MACH. | 
| 144 |  |  | //     891229  Prologue description rewritten; other prologue sections | 
| 145 |  |  | //             revised; MMATCH (location of match point for recurrences) | 
| 146 |  |  | //             removed from argument list; argument IER changed to serve | 
| 147 |  |  | //             only as an error flag (previously, in cases without error, | 
| 148 |  |  | //             it returned the number of scalings); number of error codes | 
| 149 |  |  | //             increased to provide more precise error information; | 
| 150 |  |  | //             program comments revised; SLATEC error handler calls | 
| 151 |  |  | //             introduced to enable printing of error messages to meet | 
| 152 |  |  | //             SLATEC standards. These changes were done by D. W. Lozier, | 
| 153 |  |  | //             M. A. McClain and J. M. Smith of the National Institute | 
| 154 |  |  | //             of Standards and Technology, formerly NBS. | 
| 155 |  |  | //     910415  Mixed type expressions eliminated; variable C1 initialized; | 
| 156 |  |  | //             description of THRCOF expanded. These changes were done by | 
| 157 |  |  | //             D. W. Lozier. | 
| 158 |  |  | //  7. Rewritting of the SLATEX algorithm in C++ and adaption to the | 
| 159 |  |  | //     Matpack C++ Numerics and Graphics Library by Berndt M. Gammel | 
| 160 |  |  | //     in June 1997. | 
| 161 |  |  | // | 
| 162 |  |  | //-----------------------------------------------------------------------------// | 
| 163 |  |  |  | 
| 164 |  |  |  | 
| 165 |  |  | void Wigner3jm(RealType l1, RealType l2, RealType l3, RealType m1, | 
| 166 |  |  | RealType &m2min, RealType &m2max, RealType *thrcof, int ndim, | 
| 167 |  |  | int &errflag) { | 
| 168 |  |  |  | 
| 169 |  |  | // In single precision, the largest floating point number is not | 
| 170 |  |  | // the same as in double precision: | 
| 171 |  |  | #ifdef SINGLE_PRECISION | 
| 172 |  |  | RealType MaxFloat = FLT_MAX; | 
| 173 |  |  | #else | 
| 174 |  |  | RealType MaxFloat = DBL_MAX; | 
| 175 |  |  | #endif | 
| 176 |  |  |  | 
| 177 |  |  | const RealType zero = 0.0, eps = 0.01, one = 1.0, two = 2.0; | 
| 178 |  |  |  | 
| 179 |  |  | int nfin, nlim, i, n, index, lstep, nfinp1, nfinp2, nfinp3, nstep2; | 
| 180 |  |  | RealType oldfac, dv, newfac, sumbac = 0.0, thresh, a1s, sumfor, sumuni, | 
| 181 |  |  | sum1, sum2, x, y, m2, m3, x1, x2, x3, y1, y2, y3, cnorm, | 
| 182 |  |  | ratio, a1, c1, c2, c1old = 0.0, sign1, sign2; | 
| 183 |  |  |  | 
| 184 |  |  | // Parameter adjustments | 
| 185 |  |  | --thrcof; | 
| 186 |  |  |  | 
| 187 |  |  | errflag = 0; | 
| 188 |  |  |  | 
| 189 |  |  | // "hugeRealType" is the square root of one twentieth of the | 
| 190 |  |  | // largest floating point number, approximately. | 
| 191 |  |  |  | 
| 192 |  |  | RealType hugeRealType   = sqrt(MaxFloat / 20.0), | 
| 193 |  |  | srhuge = sqrt(hugeRealType), | 
| 194 |  |  | tiny   = one / hugeRealType, | 
| 195 |  |  | srtiny = one / srhuge; | 
| 196 |  |  |  | 
| 197 |  |  | // lmatch = zero | 
| 198 |  |  |  | 
| 199 |  |  | //  Check error conditions 1, 2, and 3. | 
| 200 |  |  | if (l1 - fabs(m1) + eps < zero | 
| 201 |  |  | || fmod(l1 + fabs(m1) + eps, one) >= eps + eps) { | 
| 202 |  |  | errflag = 1; | 
| 203 |  |  |  | 
| 204 |  |  | sprintf( painCave.errMsg, "%s: %s", "ThreeJSymbolM", | 
| 205 |  |  | "l1-abs(m1) less than zero or l1+abs(m1) not integer."); | 
| 206 |  |  | painCave.isFatal = 1; | 
| 207 |  |  | simError(); | 
| 208 |  |  |  | 
| 209 |  |  | return; | 
| 210 |  |  | } else if (l1+l2-l3 < -eps || l1-l2+l3 < -eps || -(l1) + l2+l3 < -eps) { | 
| 211 |  |  | errflag = 2; | 
| 212 |  |  |  | 
| 213 |  |  | sprintf( painCave.errMsg, "%s: %s", "ThreeJSymbolM", | 
| 214 |  |  | "l1, l2, l3 do not satisfy triangular condition."); | 
| 215 |  |  | painCave.isFatal = 1; | 
| 216 |  |  | simError(); | 
| 217 |  |  |  | 
| 218 |  |  | return; | 
| 219 |  |  | } else if (fmod(l1 + l2 + l3 + eps, one) >= eps + eps) { | 
| 220 |  |  | errflag = 3; | 
| 221 |  |  |  | 
| 222 |  |  | sprintf( painCave.errMsg,  "%s: %s", "ThreeJSymbolM", | 
| 223 |  |  | "l1+l2+l3 not integer."); | 
| 224 |  |  | painCave.isFatal = 1; | 
| 225 |  |  | simError(); | 
| 226 |  |  |  | 
| 227 |  |  | return; | 
| 228 |  |  | } | 
| 229 |  |  |  | 
| 230 |  |  | // limits for m2 | 
| 231 |  |  | m2min = MpMax(-l2,-l3-m1); | 
| 232 |  |  | m2max = MpMin(l2,l3-m1); | 
| 233 |  |  |  | 
| 234 |  |  | // Check error condition 4. | 
| 235 |  |  | if (fmod(m2max - m2min + eps, one) >= eps + eps) { | 
| 236 |  |  | errflag = 4; | 
| 237 |  |  |  | 
| 238 |  |  | sprintf( painCave.errMsg, "%s: %s", "ThreeJSymbolM", | 
| 239 |  |  | "m2max-m2min not integer."); | 
| 240 |  |  | painCave.isFatal = 1; | 
| 241 |  |  | simError(); | 
| 242 |  |  |  | 
| 243 |  |  | return; | 
| 244 |  |  | } | 
| 245 |  |  | if (m2min < m2max - eps) goto L20; | 
| 246 |  |  | if (m2min < m2max + eps) goto L10; | 
| 247 |  |  |  | 
| 248 |  |  | //  Check error condition 5. | 
| 249 |  |  | errflag = 5; | 
| 250 |  |  |  | 
| 251 |  |  | sprintf( painCave.errMsg, "%s: %s", "ThreeJSymbolM", | 
| 252 |  |  | "m2min greater than m2max."); | 
| 253 |  |  | painCave.isFatal = 1; | 
| 254 |  |  | simError(); | 
| 255 |  |  |  | 
| 256 |  |  | return; | 
| 257 |  |  |  | 
| 258 |  |  | // This is reached in case that m2 and m3 can take only one value. | 
| 259 |  |  | L10: | 
| 260 |  |  | // mscale = 0 | 
| 261 |  |  | thrcof[1] = (odd(int(fabs(l2-l3-m1)+eps)) ? -one : one) / sqrt(l1+l2+l3+one); | 
| 262 |  |  | return; | 
| 263 |  |  |  | 
| 264 |  |  | // This is reached in case that M1 and M2 take more than one | 
| 265 |  |  | // value. | 
| 266 |  |  | L20: | 
| 267 |  |  | // mscale = 0 | 
| 268 |  |  | nfin = int(m2max - m2min + one + eps); | 
| 269 |  |  | if (ndim - nfin >= 0) goto L23; | 
| 270 |  |  |  | 
| 271 |  |  | // Check error condition 6. | 
| 272 |  |  |  | 
| 273 |  |  | errflag = 6; | 
| 274 |  |  | sprintf( painCave.errMsg, "%s: %s", "ThreeJSymbolM", | 
| 275 |  |  | "Dimension of result array for 3j coefficients too small."); | 
| 276 |  |  | painCave.isFatal = 1; | 
| 277 |  |  | simError(); | 
| 278 |  |  |  | 
| 279 |  |  | return; | 
| 280 |  |  |  | 
| 281 |  |  | //  Start of forward recursion from m2 = m2min | 
| 282 |  |  |  | 
| 283 |  |  | L23: | 
| 284 |  |  | m2 = m2min; | 
| 285 |  |  | thrcof[1] = srtiny; | 
| 286 |  |  | newfac = 0.0; | 
| 287 |  |  | c1 = 0.0; | 
| 288 |  |  | sum1 = tiny; | 
| 289 |  |  |  | 
| 290 |  |  | lstep = 1; | 
| 291 |  |  | L30: | 
| 292 |  |  | ++lstep; | 
| 293 |  |  | m2 += one; | 
| 294 |  |  | m3 = -m1 - m2; | 
| 295 |  |  |  | 
| 296 |  |  | oldfac = newfac; | 
| 297 |  |  | a1 = (l2 - m2 + one) * (l2 + m2) * (l3 + m3 + one) * (l3 - m3); | 
| 298 |  |  | newfac = sqrt(a1); | 
| 299 |  |  |  | 
| 300 |  |  | dv = (l1+l2+l3+one) * (l2+l3-l1) - (l2-m2+one) * (l3+m3+one) | 
| 301 |  |  | - (l2+m2-one) * (l3-m3-one); | 
| 302 |  |  |  | 
| 303 |  |  | if (lstep - 2 > 0) c1old = fabs(c1); | 
| 304 |  |  |  | 
| 305 |  |  | // L32: | 
| 306 |  |  | c1 = -dv / newfac; | 
| 307 |  |  |  | 
| 308 |  |  | if (lstep > 2) goto L60; | 
| 309 |  |  |  | 
| 310 |  |  | //  If m2 = m2min + 1, the third term in the recursion equation | 
| 311 |  |  | //  vanishes, hence | 
| 312 |  |  |  | 
| 313 |  |  | x = srtiny * c1; | 
| 314 |  |  | thrcof[2] = x; | 
| 315 |  |  | sum1 += tiny * c1 * c1; | 
| 316 |  |  | if (lstep == nfin) goto L220; | 
| 317 |  |  | goto L30; | 
| 318 |  |  |  | 
| 319 |  |  | L60: | 
| 320 |  |  | c2 = -oldfac / newfac; | 
| 321 |  |  |  | 
| 322 |  |  | // Recursion to the next 3j coefficient | 
| 323 |  |  | x = c1 * thrcof[lstep-1] + c2 * thrcof[lstep-2]; | 
| 324 |  |  | thrcof[lstep] = x; | 
| 325 |  |  | sumfor = sum1; | 
| 326 |  |  | sum1 += x * x; | 
| 327 |  |  | if (lstep == nfin) goto L100; | 
| 328 |  |  |  | 
| 329 |  |  | // See if last unnormalized 3j coefficient exceeds srhuge | 
| 330 |  |  |  | 
| 331 |  |  | if (fabs(x) < srhuge) goto L80; | 
| 332 |  |  |  | 
| 333 |  |  | // This is reached if last 3j coefficient larger than srhuge, so | 
| 334 |  |  | // that the recursion series thrcof(1), ... , thrcof(lstep) has to | 
| 335 |  |  | // be rescaled to prevent overflow | 
| 336 |  |  |  | 
| 337 |  |  | // mscale = mscale + 1 | 
| 338 |  |  | for (i = 1; i <= lstep; ++i) { | 
| 339 |  |  | if (fabs(thrcof[i]) < srtiny) thrcof[i] = zero; | 
| 340 |  |  | thrcof[i] /= srhuge; | 
| 341 |  |  | } | 
| 342 |  |  | sum1 /= hugeRealType; | 
| 343 |  |  | sumfor /= hugeRealType; | 
| 344 |  |  | x /= srhuge; | 
| 345 |  |  |  | 
| 346 |  |  | // As long as abs(c1) is decreasing, the recursion proceeds | 
| 347 |  |  | // towards increasing 3j values and, hence, is numerically stable. | 
| 348 |  |  | // Once an increase of abs(c1) is detected, the recursion | 
| 349 |  |  | // direction is reversed. | 
| 350 |  |  |  | 
| 351 |  |  | L80: | 
| 352 |  |  | if (c1old - fabs(c1) > 0.0) goto L30; | 
| 353 |  |  |  | 
| 354 |  |  | //  Keep three 3j coefficients around mmatch for comparison later | 
| 355 |  |  | //  with backward recursion values. | 
| 356 |  |  |  | 
| 357 |  |  | L100: | 
| 358 |  |  | // mmatch = m2 - 1 | 
| 359 |  |  | nstep2 = nfin - lstep + 3; | 
| 360 |  |  | x1 = x; | 
| 361 |  |  | x2 = thrcof[lstep-1]; | 
| 362 |  |  | x3 = thrcof[lstep-2]; | 
| 363 |  |  |  | 
| 364 |  |  | //  Starting backward recursion from m2max taking nstep2 steps, so | 
| 365 |  |  | //  that forwards and backwards recursion overlap at the three | 
| 366 |  |  | //  points m2 = mmatch+1, mmatch, mmatch-1. | 
| 367 |  |  |  | 
| 368 |  |  | nfinp1 = nfin + 1; | 
| 369 |  |  | nfinp2 = nfin + 2; | 
| 370 |  |  | nfinp3 = nfin + 3; | 
| 371 |  |  | thrcof[nfin] = srtiny; | 
| 372 |  |  | sum2 = tiny; | 
| 373 |  |  |  | 
| 374 |  |  | m2 = m2max + two; | 
| 375 |  |  | lstep = 1; | 
| 376 |  |  | L110: | 
| 377 |  |  | ++lstep; | 
| 378 |  |  | m2 -= one; | 
| 379 |  |  | m3 = -m1 - m2; | 
| 380 |  |  | oldfac = newfac; | 
| 381 |  |  | a1s = (l2-m2+two) * (l2+m2-one) * (l3+m3+two) * (l3-m3-one); | 
| 382 |  |  | newfac = sqrt(a1s); | 
| 383 |  |  | dv = (l1+l2+l3+one) * (l2+l3-l1) - (l2-m2+one) * (l3+m3+one) | 
| 384 |  |  | - (l2+m2-one) * (l3-m3-one); | 
| 385 |  |  | c1 = -dv / newfac; | 
| 386 |  |  | if (lstep > 2) goto L120; | 
| 387 |  |  |  | 
| 388 |  |  | // if m2 = m2max + 1 the third term in the recursion equation | 
| 389 |  |  | // vanishes | 
| 390 |  |  |  | 
| 391 |  |  | y = srtiny * c1; | 
| 392 |  |  | thrcof[nfin - 1] = y; | 
| 393 |  |  | if (lstep == nstep2) goto L200; | 
| 394 |  |  | sumbac = sum2; | 
| 395 |  |  | sum2 += y * y; | 
| 396 |  |  | goto L110; | 
| 397 |  |  |  | 
| 398 |  |  | L120: | 
| 399 |  |  | c2 = -oldfac / newfac; | 
| 400 |  |  |  | 
| 401 |  |  | // Recursion to the next 3j coefficient | 
| 402 |  |  |  | 
| 403 |  |  | y = c1 * thrcof[nfinp2 - lstep] + c2 * thrcof[nfinp3 - lstep]; | 
| 404 |  |  |  | 
| 405 |  |  | if (lstep == nstep2) goto L200; | 
| 406 |  |  |  | 
| 407 |  |  | thrcof[nfinp1 - lstep] = y; | 
| 408 |  |  | sumbac = sum2; | 
| 409 |  |  | sum2 += y * y; | 
| 410 |  |  |  | 
| 411 |  |  | // See if last 3j coefficient exceeds SRHUGE | 
| 412 |  |  |  | 
| 413 |  |  | if (fabs(y) < srhuge) goto L110; | 
| 414 |  |  |  | 
| 415 |  |  | // This is reached if last 3j coefficient larger than srhuge, so | 
| 416 |  |  | // that the recursion series | 
| 417 |  |  | // thrcof(nfin), ... , thrcof(nfin-lstep+1) | 
| 418 |  |  | // has to be rescaled to prevent overflow. | 
| 419 |  |  |  | 
| 420 |  |  | // mscale = mscale + 1 | 
| 421 |  |  | for (i = 1; i <= lstep; ++i) { | 
| 422 |  |  | index = nfin - i + 1; | 
| 423 |  |  | if (fabs(thrcof[index]) < srtiny) thrcof[index] = zero; | 
| 424 |  |  | thrcof[index] /= srhuge; | 
| 425 |  |  | } | 
| 426 |  |  | sum2 /= hugeRealType; | 
| 427 |  |  | sumbac /= hugeRealType; | 
| 428 |  |  |  | 
| 429 |  |  | goto L110; | 
| 430 |  |  |  | 
| 431 |  |  | //  The forward recursion 3j coefficients x1, x2, x3 are to be | 
| 432 |  |  | //  matched with the corresponding backward recursion values y1, | 
| 433 |  |  | //  y2, y3. | 
| 434 |  |  |  | 
| 435 |  |  | L200: | 
| 436 |  |  | y3 = y; | 
| 437 |  |  | y2 = thrcof[nfinp2-lstep]; | 
| 438 |  |  | y1 = thrcof[nfinp3-lstep]; | 
| 439 |  |  |  | 
| 440 |  |  | //  Determine now ratio such that yi = ratio * xi (i=1,2,3) holds | 
| 441 |  |  | //  with minimal error. | 
| 442 |  |  |  | 
| 443 |  |  | ratio = (x1*y1 + x2*y2 + x3*y3) / (x1*x1 + x2*x2 + x3*x3); | 
| 444 |  |  | nlim = nfin - nstep2 + 1; | 
| 445 |  |  |  | 
| 446 |  |  | if (fabs(ratio) < one) goto L211; | 
| 447 |  |  | for (n = 1; n <= nlim; ++n) | 
| 448 |  |  | thrcof[n] = ratio * thrcof[n]; | 
| 449 |  |  | sumuni = ratio * ratio * sumfor + sumbac; | 
| 450 |  |  | goto L230; | 
| 451 |  |  |  | 
| 452 |  |  | L211: | 
| 453 |  |  | ++nlim; | 
| 454 |  |  | ratio = one / ratio; | 
| 455 |  |  | for (n = nlim; n <= nfin; ++n) | 
| 456 |  |  | thrcof[n] = ratio * thrcof[n]; | 
| 457 |  |  | sumuni = sumfor + ratio * ratio * sumbac; | 
| 458 |  |  | goto L230; | 
| 459 |  |  |  | 
| 460 |  |  | L220: | 
| 461 |  |  | sumuni = sum1; | 
| 462 |  |  |  | 
| 463 |  |  | // Normalize 3j coefficients | 
| 464 |  |  |  | 
| 465 |  |  | L230: | 
| 466 |  |  | cnorm = one / sqrt((l1+l1+one) * sumuni); | 
| 467 |  |  |  | 
| 468 |  |  | // Sign convention for last 3j coefficient determines overall | 
| 469 |  |  | // phase | 
| 470 |  |  |  | 
| 471 |  |  | sign1 = sign(thrcof[nfin]); | 
| 472 |  |  | sign2 = odd(int(fabs(l2-l3-m1)+eps)) ? -one : one; | 
| 473 |  |  | if (sign1 * sign2 <= 0.0) goto L235; | 
| 474 |  |  | else goto L236; | 
| 475 |  |  |  | 
| 476 |  |  | L235: | 
| 477 |  |  | cnorm = -cnorm; | 
| 478 |  |  |  | 
| 479 |  |  | L236: | 
| 480 |  |  | if (fabs(cnorm) < one) goto L250; | 
| 481 |  |  |  | 
| 482 |  |  | for (n = 1; n <= nfin; ++n) | 
| 483 |  |  | thrcof[n] = cnorm * thrcof[n]; | 
| 484 |  |  | return; | 
| 485 |  |  |  | 
| 486 |  |  | L250: | 
| 487 |  |  | thresh = tiny / fabs(cnorm); | 
| 488 |  |  | for (n = 1; n <= nfin; ++n) { | 
| 489 |  |  | if (fabs(thrcof[n]) < thresh) thrcof[n] = zero; | 
| 490 |  |  | thrcof[n] = cnorm * thrcof[n]; | 
| 491 |  |  | } | 
| 492 |  |  | } | 
| 493 |  |  | } |