| 1 | gezelter | 1767 | /* | 
| 2 |  |  | * Borrowed from OpenMM. | 
| 3 |  |  | */ | 
| 4 |  |  |  | 
| 5 |  |  | #include "config.h" | 
| 6 |  |  | #ifndef MATH_ERFC_H | 
| 7 |  |  | #define MATH_ERFC_H | 
| 8 |  |  |  | 
| 9 |  |  | /* | 
| 10 |  |  | * At least up to version 8 (VC++ 2005), Microsoft does not support the | 
| 11 |  |  | * standard C99 erf() and erfc() functions. For now we're including these | 
| 12 |  |  | * definitions for an MSVC compilation; if these are added later then | 
| 13 |  |  | * the #ifdef below should change to compare _MSC_VER with a particular | 
| 14 |  |  | * version level. | 
| 15 |  |  | */ | 
| 16 |  |  |  | 
| 17 |  |  | #ifdef _MSC_VER | 
| 18 |  |  |  | 
| 19 |  |  |  | 
| 20 |  |  | /*************************** | 
| 21 |  |  | *   erf.cpp | 
| 22 |  |  | *   author:  Steve Strand | 
| 23 |  |  | *   written: 29-Jan-04 | 
| 24 |  |  | ***************************/ | 
| 25 |  |  |  | 
| 26 |  |  | #include <cmath> | 
| 27 |  |  |  | 
| 28 |  |  | static const RealType rel_error= 1E-12;        //calculate 12 significant figures | 
| 29 |  |  | //you can adjust rel_error to trade off between accuracy and speed | 
| 30 |  |  | //but don't ask for > 15 figures (assuming usual 52 bit mantissa in a double) | 
| 31 |  |  |  | 
| 32 |  |  | static RealType erfc(RealType x); | 
| 33 |  |  |  | 
| 34 |  |  | static RealType erf(RealType x) | 
| 35 |  |  | //erf(x) = 2/sqrt(pi)*integral(exp(-t^2),t,0,x) | 
| 36 |  |  | //       = 2/sqrt(pi)*[x - x^3/3 + x^5/5*2! - x^7/7*3! + ...] | 
| 37 |  |  | //       = 1-erfc(x) | 
| 38 |  |  | { | 
| 39 |  |  | static const RealType two_sqrtpi=  1.128379167095512574;        // 2/sqrt(pi) | 
| 40 |  |  | if (fabs(x) > 2.2) { | 
| 41 |  |  | return 1.0 - erfc(x);        //use continued fraction when fabs(x) > 2.2 | 
| 42 |  |  | } | 
| 43 |  |  | RealType sum= x, term= x, xsqr= x*x; | 
| 44 |  |  | int j= 1; | 
| 45 |  |  | do { | 
| 46 |  |  | term*= xsqr/j; | 
| 47 |  |  | sum-= term/(2*j+1); | 
| 48 |  |  | ++j; | 
| 49 |  |  | term*= xsqr/j; | 
| 50 |  |  | sum+= term/(2*j+1); | 
| 51 |  |  | ++j; | 
| 52 |  |  | } while (fabs(term)/sum > rel_error); | 
| 53 |  |  | return two_sqrtpi*sum; | 
| 54 |  |  | } | 
| 55 |  |  |  | 
| 56 |  |  |  | 
| 57 |  |  | static RealType erfc(RealType x) | 
| 58 |  |  | //erfc(x) = 2/sqrt(pi)*integral(exp(-t^2),t,x,inf) | 
| 59 |  |  | //        = exp(-x^2)/sqrt(pi) * [1/x+ (1/2)/x+ (2/2)/x+ (3/2)/x+ (4/2)/x+ ...] | 
| 60 |  |  | //        = 1-erf(x) | 
| 61 |  |  | //expression inside [] is a continued fraction so '+' means add to denominator only | 
| 62 |  |  | { | 
| 63 |  |  | static const RealType one_sqrtpi=  0.564189583547756287;        // 1/sqrt(pi) | 
| 64 |  |  | if (fabs(x) < 2.2) { | 
| 65 |  |  | return 1.0 - erf(x);        //use series when fabs(x) < 2.2 | 
| 66 |  |  | } | 
| 67 |  |  | // Don't look for x==0 here! | 
| 68 |  |  | if (x < 0) {               //continued fraction only valid for x>0 | 
| 69 |  |  | return 2.0 - erfc(-x); | 
| 70 |  |  | } | 
| 71 |  |  | RealType a=1, b=x;                //last two convergent numerators | 
| 72 |  |  | RealType c=x, d=x*x+0.5;          //last two convergent denominators | 
| 73 |  |  | RealType q1, q2= b/d;             //last two convergents (a/c and b/d) | 
| 74 |  |  | RealType n= 1.0, t; | 
| 75 |  |  | do { | 
| 76 |  |  | t= a*n+b*x; | 
| 77 |  |  | a= b; | 
| 78 |  |  | b= t; | 
| 79 |  |  | t= c*n+d*x; | 
| 80 |  |  | c= d; | 
| 81 |  |  | d= t; | 
| 82 |  |  | n+= 0.5; | 
| 83 |  |  | q1= q2; | 
| 84 |  |  | q2= b/d; | 
| 85 |  |  | } while (fabs(q1-q2)/q2 > rel_error); | 
| 86 |  |  | return one_sqrtpi*exp(-x*x)*q2; | 
| 87 |  |  | } | 
| 88 |  |  |  | 
| 89 |  |  | #endif // _MSC_VER | 
| 90 |  |  |  | 
| 91 |  |  | #endif |