| 1 | /* | 
| 2 | * Borrowed from OpenMM. | 
| 3 | */ | 
| 4 |  | 
| 5 | #include "config.h" | 
| 6 | #ifndef MATH_ERFC_H | 
| 7 | #define MATH_ERFC_H | 
| 8 |  | 
| 9 | /* | 
| 10 | * At least up to version 8 (VC++ 2005), Microsoft does not support the | 
| 11 | * standard C99 erf() and erfc() functions. For now we're including these | 
| 12 | * definitions for an MSVC compilation; if these are added later then | 
| 13 | * the #ifdef below should change to compare _MSC_VER with a particular | 
| 14 | * version level. | 
| 15 | */ | 
| 16 |  | 
| 17 | #ifdef _MSC_VER | 
| 18 |  | 
| 19 |  | 
| 20 | /*************************** | 
| 21 | *   erf.cpp | 
| 22 | *   author:  Steve Strand | 
| 23 | *   written: 29-Jan-04 | 
| 24 | ***************************/ | 
| 25 |  | 
| 26 | #include <cmath> | 
| 27 |  | 
| 28 | static const RealType rel_error= 1E-12;        //calculate 12 significant figures | 
| 29 | //you can adjust rel_error to trade off between accuracy and speed | 
| 30 | //but don't ask for > 15 figures (assuming usual 52 bit mantissa in a double) | 
| 31 |  | 
| 32 | static RealType erfc(RealType x); | 
| 33 |  | 
| 34 | static RealType erf(RealType x) | 
| 35 | //erf(x) = 2/sqrt(pi)*integral(exp(-t^2),t,0,x) | 
| 36 | //       = 2/sqrt(pi)*[x - x^3/3 + x^5/5*2! - x^7/7*3! + ...] | 
| 37 | //       = 1-erfc(x) | 
| 38 | { | 
| 39 | static const RealType two_sqrtpi=  1.128379167095512574;        // 2/sqrt(pi) | 
| 40 | if (fabs(x) > 2.2) { | 
| 41 | return 1.0 - erfc(x);        //use continued fraction when fabs(x) > 2.2 | 
| 42 | } | 
| 43 | RealType sum= x, term= x, xsqr= x*x; | 
| 44 | int j= 1; | 
| 45 | do { | 
| 46 | term*= xsqr/j; | 
| 47 | sum-= term/(2*j+1); | 
| 48 | ++j; | 
| 49 | term*= xsqr/j; | 
| 50 | sum+= term/(2*j+1); | 
| 51 | ++j; | 
| 52 | } while (fabs(term)/sum > rel_error); | 
| 53 | return two_sqrtpi*sum; | 
| 54 | } | 
| 55 |  | 
| 56 |  | 
| 57 | static RealType erfc(RealType x) | 
| 58 | //erfc(x) = 2/sqrt(pi)*integral(exp(-t^2),t,x,inf) | 
| 59 | //        = exp(-x^2)/sqrt(pi) * [1/x+ (1/2)/x+ (2/2)/x+ (3/2)/x+ (4/2)/x+ ...] | 
| 60 | //        = 1-erf(x) | 
| 61 | //expression inside [] is a continued fraction so '+' means add to denominator only | 
| 62 | { | 
| 63 | static const RealType one_sqrtpi=  0.564189583547756287;        // 1/sqrt(pi) | 
| 64 | if (fabs(x) < 2.2) { | 
| 65 | return 1.0 - erf(x);        //use series when fabs(x) < 2.2 | 
| 66 | } | 
| 67 | // Don't look for x==0 here! | 
| 68 | if (x < 0) {               //continued fraction only valid for x>0 | 
| 69 | return 2.0 - erfc(-x); | 
| 70 | } | 
| 71 | RealType a=1, b=x;                //last two convergent numerators | 
| 72 | RealType c=x, d=x*x+0.5;          //last two convergent denominators | 
| 73 | RealType q1, q2= b/d;             //last two convergents (a/c and b/d) | 
| 74 | RealType n= 1.0, t; | 
| 75 | do { | 
| 76 | t= a*n+b*x; | 
| 77 | a= b; | 
| 78 | b= t; | 
| 79 | t= c*n+d*x; | 
| 80 | c= d; | 
| 81 | d= t; | 
| 82 | n+= 0.5; | 
| 83 | q1= q2; | 
| 84 | q2= b/d; | 
| 85 | } while (fabs(q1-q2)/q2 > rel_error); | 
| 86 | return one_sqrtpi*exp(-x*x)*q2; | 
| 87 | } | 
| 88 |  | 
| 89 | #endif // _MSC_VER | 
| 90 |  | 
| 91 | #endif |