| 1 |
#ifndef JAMA_EIG_H |
| 2 |
#define JAMA_EIG_H |
| 3 |
|
| 4 |
|
| 5 |
#include "tnt_array1d.hpp" |
| 6 |
#include "tnt_array2d.hpp" |
| 7 |
#include "tnt_math_utils.hpp" |
| 8 |
|
| 9 |
#include <algorithm> |
| 10 |
// for min(), max() below |
| 11 |
|
| 12 |
#include <cmath> |
| 13 |
// for abs() below |
| 14 |
|
| 15 |
using namespace TNT; |
| 16 |
using namespace std; |
| 17 |
|
| 18 |
namespace JAMA |
| 19 |
{ |
| 20 |
|
| 21 |
/** |
| 22 |
|
| 23 |
Computes eigenvalues and eigenvectors of a real (non-complex) |
| 24 |
matrix. |
| 25 |
<P> |
| 26 |
If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is |
| 27 |
diagonal and the eigenvector matrix V is orthogonal. That is, |
| 28 |
the diagonal values of D are the eigenvalues, and |
| 29 |
V*V' = I, where I is the identity matrix. The columns of V |
| 30 |
represent the eigenvectors in the sense that A*V = V*D. |
| 31 |
|
| 32 |
<P> |
| 33 |
If A is not symmetric, then the eigenvalue matrix D is block diagonal |
| 34 |
with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, |
| 35 |
a + i*b, in 2-by-2 blocks, [a, b; -b, a]. That is, if the complex |
| 36 |
eigenvalues look like |
| 37 |
<pre> |
| 38 |
|
| 39 |
u + iv . . . . . |
| 40 |
. u - iv . . . . |
| 41 |
. . a + ib . . . |
| 42 |
. . . a - ib . . |
| 43 |
. . . . x . |
| 44 |
. . . . . y |
| 45 |
</pre> |
| 46 |
then D looks like |
| 47 |
<pre> |
| 48 |
|
| 49 |
u v . . . . |
| 50 |
-v u . . . . |
| 51 |
. . a b . . |
| 52 |
. . -b a . . |
| 53 |
. . . . x . |
| 54 |
. . . . . y |
| 55 |
</pre> |
| 56 |
This keeps V a real matrix in both symmetric and non-symmetric |
| 57 |
cases, and A*V = V*D. |
| 58 |
|
| 59 |
|
| 60 |
|
| 61 |
<p> |
| 62 |
The matrix V may be badly |
| 63 |
conditioned, or even singular, so the validity of the equation |
| 64 |
A = V*D*inverse(V) depends upon the condition number of V. |
| 65 |
|
| 66 |
<p> |
| 67 |
(Adapted from JAMA, a Java Matrix Library, developed by jointly |
| 68 |
by the Mathworks and NIST; see http://math.nist.gov/javanumerics/jama). |
| 69 |
**/ |
| 70 |
|
| 71 |
template <class Real> |
| 72 |
class Eigenvalue |
| 73 |
{ |
| 74 |
|
| 75 |
|
| 76 |
/** Row and column dimension (square matrix). */ |
| 77 |
int n; |
| 78 |
|
| 79 |
int issymmetric; /* boolean*/ |
| 80 |
|
| 81 |
/** Arrays for internal storage of eigenvalues. */ |
| 82 |
|
| 83 |
TNT::Array1D<Real> d; /* real part */ |
| 84 |
TNT::Array1D<Real> e; /* img part */ |
| 85 |
|
| 86 |
/** Array for internal storage of eigenvectors. */ |
| 87 |
TNT::Array2D<Real> V; |
| 88 |
|
| 89 |
/** Array for internal storage of nonsymmetric Hessenberg form. |
| 90 |
@serial internal storage of nonsymmetric Hessenberg form. |
| 91 |
*/ |
| 92 |
TNT::Array2D<Real> H; |
| 93 |
|
| 94 |
|
| 95 |
/** Working storage for nonsymmetric algorithm. |
| 96 |
@serial working storage for nonsymmetric algorithm. |
| 97 |
*/ |
| 98 |
TNT::Array1D<Real> ort; |
| 99 |
|
| 100 |
|
| 101 |
// Symmetric Householder reduction to tridiagonal form. |
| 102 |
|
| 103 |
void tred2() { |
| 104 |
|
| 105 |
// This is derived from the Algol procedures tred2 by |
| 106 |
// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for |
| 107 |
// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding |
| 108 |
// Fortran subroutine in EISPACK. |
| 109 |
|
| 110 |
for (int j = 0; j < n; j++) { |
| 111 |
d[j] = V[n-1][j]; |
| 112 |
} |
| 113 |
|
| 114 |
// Householder reduction to tridiagonal form. |
| 115 |
|
| 116 |
for (int i = n-1; i > 0; i--) { |
| 117 |
|
| 118 |
// Scale to avoid under/overflow. |
| 119 |
|
| 120 |
Real scale = 0.0; |
| 121 |
Real h = 0.0; |
| 122 |
for (int k = 0; k < i; k++) { |
| 123 |
scale = scale + abs(d[k]); |
| 124 |
} |
| 125 |
if (scale == 0.0) { |
| 126 |
e[i] = d[i-1]; |
| 127 |
for (int j = 0; j < i; j++) { |
| 128 |
d[j] = V[i-1][j]; |
| 129 |
V[i][j] = 0.0; |
| 130 |
V[j][i] = 0.0; |
| 131 |
} |
| 132 |
} else { |
| 133 |
|
| 134 |
// Generate Householder vector. |
| 135 |
|
| 136 |
for (int k = 0; k < i; k++) { |
| 137 |
d[k] /= scale; |
| 138 |
h += d[k] * d[k]; |
| 139 |
} |
| 140 |
Real f = d[i-1]; |
| 141 |
Real g = sqrt(h); |
| 142 |
if (f > 0) { |
| 143 |
g = -g; |
| 144 |
} |
| 145 |
e[i] = scale * g; |
| 146 |
h = h - f * g; |
| 147 |
d[i-1] = f - g; |
| 148 |
for (int j = 0; j < i; j++) { |
| 149 |
e[j] = 0.0; |
| 150 |
} |
| 151 |
|
| 152 |
// Apply similarity transformation to remaining columns. |
| 153 |
|
| 154 |
for (int j = 0; j < i; j++) { |
| 155 |
f = d[j]; |
| 156 |
V[j][i] = f; |
| 157 |
g = e[j] + V[j][j] * f; |
| 158 |
for (int k = j+1; k <= i-1; k++) { |
| 159 |
g += V[k][j] * d[k]; |
| 160 |
e[k] += V[k][j] * f; |
| 161 |
} |
| 162 |
e[j] = g; |
| 163 |
} |
| 164 |
f = 0.0; |
| 165 |
for (int j = 0; j < i; j++) { |
| 166 |
e[j] /= h; |
| 167 |
f += e[j] * d[j]; |
| 168 |
} |
| 169 |
Real hh = f / (h + h); |
| 170 |
for (int j = 0; j < i; j++) { |
| 171 |
e[j] -= hh * d[j]; |
| 172 |
} |
| 173 |
for (int j = 0; j < i; j++) { |
| 174 |
f = d[j]; |
| 175 |
g = e[j]; |
| 176 |
for (int k = j; k <= i-1; k++) { |
| 177 |
V[k][j] -= (f * e[k] + g * d[k]); |
| 178 |
} |
| 179 |
d[j] = V[i-1][j]; |
| 180 |
V[i][j] = 0.0; |
| 181 |
} |
| 182 |
} |
| 183 |
d[i] = h; |
| 184 |
} |
| 185 |
|
| 186 |
// Accumulate transformations. |
| 187 |
|
| 188 |
for (int i = 0; i < n-1; i++) { |
| 189 |
V[n-1][i] = V[i][i]; |
| 190 |
V[i][i] = 1.0; |
| 191 |
Real h = d[i+1]; |
| 192 |
if (h != 0.0) { |
| 193 |
for (int k = 0; k <= i; k++) { |
| 194 |
d[k] = V[k][i+1] / h; |
| 195 |
} |
| 196 |
for (int j = 0; j <= i; j++) { |
| 197 |
Real g = 0.0; |
| 198 |
for (int k = 0; k <= i; k++) { |
| 199 |
g += V[k][i+1] * V[k][j]; |
| 200 |
} |
| 201 |
for (int k = 0; k <= i; k++) { |
| 202 |
V[k][j] -= g * d[k]; |
| 203 |
} |
| 204 |
} |
| 205 |
} |
| 206 |
for (int k = 0; k <= i; k++) { |
| 207 |
V[k][i+1] = 0.0; |
| 208 |
} |
| 209 |
} |
| 210 |
for (int j = 0; j < n; j++) { |
| 211 |
d[j] = V[n-1][j]; |
| 212 |
V[n-1][j] = 0.0; |
| 213 |
} |
| 214 |
V[n-1][n-1] = 1.0; |
| 215 |
e[0] = 0.0; |
| 216 |
} |
| 217 |
|
| 218 |
// Symmetric tridiagonal QL algorithm. |
| 219 |
|
| 220 |
void tql2 () { |
| 221 |
|
| 222 |
// This is derived from the Algol procedures tql2, by |
| 223 |
// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for |
| 224 |
// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding |
| 225 |
// Fortran subroutine in EISPACK. |
| 226 |
|
| 227 |
for (int i = 1; i < n; i++) { |
| 228 |
e[i-1] = e[i]; |
| 229 |
} |
| 230 |
e[n-1] = 0.0; |
| 231 |
|
| 232 |
Real f = 0.0; |
| 233 |
Real tst1 = 0.0; |
| 234 |
Real eps = pow(2.0,-52.0); |
| 235 |
for (int l = 0; l < n; l++) { |
| 236 |
|
| 237 |
// Find small subdiagonal element |
| 238 |
|
| 239 |
tst1 = max(tst1,abs(d[l]) + abs(e[l])); |
| 240 |
int m = l; |
| 241 |
|
| 242 |
// Original while-loop from Java code |
| 243 |
while (m < n) { |
| 244 |
if (abs(e[m]) <= eps*tst1) { |
| 245 |
break; |
| 246 |
} |
| 247 |
m++; |
| 248 |
} |
| 249 |
|
| 250 |
|
| 251 |
// If m == l, d[l] is an eigenvalue, |
| 252 |
// otherwise, iterate. |
| 253 |
|
| 254 |
if (m > l) { |
| 255 |
int iter = 0; |
| 256 |
do { |
| 257 |
iter = iter + 1; // (Could check iteration count here.) |
| 258 |
|
| 259 |
// Compute implicit shift |
| 260 |
|
| 261 |
Real g = d[l]; |
| 262 |
Real p = (d[l+1] - g) / (2.0 * e[l]); |
| 263 |
Real r = hypot(p,1.0); |
| 264 |
if (p < 0) { |
| 265 |
r = -r; |
| 266 |
} |
| 267 |
d[l] = e[l] / (p + r); |
| 268 |
d[l+1] = e[l] * (p + r); |
| 269 |
Real dl1 = d[l+1]; |
| 270 |
Real h = g - d[l]; |
| 271 |
for (int i = l+2; i < n; i++) { |
| 272 |
d[i] -= h; |
| 273 |
} |
| 274 |
f = f + h; |
| 275 |
|
| 276 |
// Implicit QL transformation. |
| 277 |
|
| 278 |
p = d[m]; |
| 279 |
Real c = 1.0; |
| 280 |
Real c2 = c; |
| 281 |
Real c3 = c; |
| 282 |
Real el1 = e[l+1]; |
| 283 |
Real s = 0.0; |
| 284 |
Real s2 = 0.0; |
| 285 |
for (int i = m-1; i >= l; i--) { |
| 286 |
c3 = c2; |
| 287 |
c2 = c; |
| 288 |
s2 = s; |
| 289 |
g = c * e[i]; |
| 290 |
h = c * p; |
| 291 |
r = hypot(p,e[i]); |
| 292 |
e[i+1] = s * r; |
| 293 |
s = e[i] / r; |
| 294 |
c = p / r; |
| 295 |
p = c * d[i] - s * g; |
| 296 |
d[i+1] = h + s * (c * g + s * d[i]); |
| 297 |
|
| 298 |
// Accumulate transformation. |
| 299 |
|
| 300 |
for (int k = 0; k < n; k++) { |
| 301 |
h = V[k][i+1]; |
| 302 |
V[k][i+1] = s * V[k][i] + c * h; |
| 303 |
V[k][i] = c * V[k][i] - s * h; |
| 304 |
} |
| 305 |
} |
| 306 |
p = -s * s2 * c3 * el1 * e[l] / dl1; |
| 307 |
e[l] = s * p; |
| 308 |
d[l] = c * p; |
| 309 |
|
| 310 |
// Check for convergence. |
| 311 |
|
| 312 |
} while (abs(e[l]) > eps*tst1); |
| 313 |
} |
| 314 |
d[l] = d[l] + f; |
| 315 |
e[l] = 0.0; |
| 316 |
} |
| 317 |
|
| 318 |
// Sort eigenvalues and corresponding vectors. |
| 319 |
|
| 320 |
for (int i = 0; i < n-1; i++) { |
| 321 |
int k = i; |
| 322 |
Real p = d[i]; |
| 323 |
for (int j = i+1; j < n; j++) { |
| 324 |
if (d[j] < p) { |
| 325 |
k = j; |
| 326 |
p = d[j]; |
| 327 |
} |
| 328 |
} |
| 329 |
if (k != i) { |
| 330 |
d[k] = d[i]; |
| 331 |
d[i] = p; |
| 332 |
for (int j = 0; j < n; j++) { |
| 333 |
p = V[j][i]; |
| 334 |
V[j][i] = V[j][k]; |
| 335 |
V[j][k] = p; |
| 336 |
} |
| 337 |
} |
| 338 |
} |
| 339 |
} |
| 340 |
|
| 341 |
// Nonsymmetric reduction to Hessenberg form. |
| 342 |
|
| 343 |
void orthes () { |
| 344 |
|
| 345 |
// This is derived from the Algol procedures orthes and ortran, |
| 346 |
// by Martin and Wilkinson, Handbook for Auto. Comp., |
| 347 |
// Vol.ii-Linear Algebra, and the corresponding |
| 348 |
// Fortran subroutines in EISPACK. |
| 349 |
|
| 350 |
int low = 0; |
| 351 |
int high = n-1; |
| 352 |
|
| 353 |
for (int m = low+1; m <= high-1; m++) { |
| 354 |
|
| 355 |
// Scale column. |
| 356 |
|
| 357 |
Real scale = 0.0; |
| 358 |
for (int i = m; i <= high; i++) { |
| 359 |
scale = scale + abs(H[i][m-1]); |
| 360 |
} |
| 361 |
if (scale != 0.0) { |
| 362 |
|
| 363 |
// Compute Householder transformation. |
| 364 |
|
| 365 |
Real h = 0.0; |
| 366 |
for (int i = high; i >= m; i--) { |
| 367 |
ort[i] = H[i][m-1]/scale; |
| 368 |
h += ort[i] * ort[i]; |
| 369 |
} |
| 370 |
Real g = sqrt(h); |
| 371 |
if (ort[m] > 0) { |
| 372 |
g = -g; |
| 373 |
} |
| 374 |
h = h - ort[m] * g; |
| 375 |
ort[m] = ort[m] - g; |
| 376 |
|
| 377 |
// Apply Householder similarity transformation |
| 378 |
// H = (I-u*u'/h)*H*(I-u*u')/h) |
| 379 |
|
| 380 |
for (int j = m; j < n; j++) { |
| 381 |
Real f = 0.0; |
| 382 |
for (int i = high; i >= m; i--) { |
| 383 |
f += ort[i]*H[i][j]; |
| 384 |
} |
| 385 |
f = f/h; |
| 386 |
for (int i = m; i <= high; i++) { |
| 387 |
H[i][j] -= f*ort[i]; |
| 388 |
} |
| 389 |
} |
| 390 |
|
| 391 |
for (int i = 0; i <= high; i++) { |
| 392 |
Real f = 0.0; |
| 393 |
for (int j = high; j >= m; j--) { |
| 394 |
f += ort[j]*H[i][j]; |
| 395 |
} |
| 396 |
f = f/h; |
| 397 |
for (int j = m; j <= high; j++) { |
| 398 |
H[i][j] -= f*ort[j]; |
| 399 |
} |
| 400 |
} |
| 401 |
ort[m] = scale*ort[m]; |
| 402 |
H[m][m-1] = scale*g; |
| 403 |
} |
| 404 |
} |
| 405 |
|
| 406 |
// Accumulate transformations (Algol's ortran). |
| 407 |
|
| 408 |
for (int i = 0; i < n; i++) { |
| 409 |
for (int j = 0; j < n; j++) { |
| 410 |
V[i][j] = (i == j ? 1.0 : 0.0); |
| 411 |
} |
| 412 |
} |
| 413 |
|
| 414 |
for (int m = high-1; m >= low+1; m--) { |
| 415 |
if (H[m][m-1] != 0.0) { |
| 416 |
for (int i = m+1; i <= high; i++) { |
| 417 |
ort[i] = H[i][m-1]; |
| 418 |
} |
| 419 |
for (int j = m; j <= high; j++) { |
| 420 |
Real g = 0.0; |
| 421 |
for (int i = m; i <= high; i++) { |
| 422 |
g += ort[i] * V[i][j]; |
| 423 |
} |
| 424 |
// Double division avoids possible underflow |
| 425 |
g = (g / ort[m]) / H[m][m-1]; |
| 426 |
for (int i = m; i <= high; i++) { |
| 427 |
V[i][j] += g * ort[i]; |
| 428 |
} |
| 429 |
} |
| 430 |
} |
| 431 |
} |
| 432 |
} |
| 433 |
|
| 434 |
|
| 435 |
// Complex scalar division. |
| 436 |
|
| 437 |
Real cdivr, cdivi; |
| 438 |
void cdiv(Real xr, Real xi, Real yr, Real yi) { |
| 439 |
Real r,d; |
| 440 |
if (abs(yr) > abs(yi)) { |
| 441 |
r = yi/yr; |
| 442 |
d = yr + r*yi; |
| 443 |
cdivr = (xr + r*xi)/d; |
| 444 |
cdivi = (xi - r*xr)/d; |
| 445 |
} else { |
| 446 |
r = yr/yi; |
| 447 |
d = yi + r*yr; |
| 448 |
cdivr = (r*xr + xi)/d; |
| 449 |
cdivi = (r*xi - xr)/d; |
| 450 |
} |
| 451 |
} |
| 452 |
|
| 453 |
|
| 454 |
// Nonsymmetric reduction from Hessenberg to real Schur form. |
| 455 |
|
| 456 |
void hqr2 () { |
| 457 |
|
| 458 |
// This is derived from the Algol procedure hqr2, |
| 459 |
// by Martin and Wilkinson, Handbook for Auto. Comp., |
| 460 |
// Vol.ii-Linear Algebra, and the corresponding |
| 461 |
// Fortran subroutine in EISPACK. |
| 462 |
|
| 463 |
// Initialize |
| 464 |
|
| 465 |
int nn = this->n; |
| 466 |
int n = nn-1; |
| 467 |
int low = 0; |
| 468 |
int high = nn-1; |
| 469 |
Real eps = pow(2.0,-52.0); |
| 470 |
Real exshift = 0.0; |
| 471 |
Real p=0,q=0,r=0,s=0,z=0,t,w,x,y; |
| 472 |
|
| 473 |
// Store roots isolated by balanc and compute matrix norm |
| 474 |
|
| 475 |
Real norm = 0.0; |
| 476 |
for (int i = 0; i < nn; i++) { |
| 477 |
if ((i < low) || (i > high)) { |
| 478 |
d[i] = H[i][i]; |
| 479 |
e[i] = 0.0; |
| 480 |
} |
| 481 |
for (int j = max(i-1,0); j < nn; j++) { |
| 482 |
norm = norm + abs(H[i][j]); |
| 483 |
} |
| 484 |
} |
| 485 |
|
| 486 |
// Outer loop over eigenvalue index |
| 487 |
|
| 488 |
int iter = 0; |
| 489 |
while (n >= low) { |
| 490 |
|
| 491 |
// Look for single small sub-diagonal element |
| 492 |
|
| 493 |
int l = n; |
| 494 |
while (l > low) { |
| 495 |
s = abs(H[l-1][l-1]) + abs(H[l][l]); |
| 496 |
if (s == 0.0) { |
| 497 |
s = norm; |
| 498 |
} |
| 499 |
if (abs(H[l][l-1]) < eps * s) { |
| 500 |
break; |
| 501 |
} |
| 502 |
l--; |
| 503 |
} |
| 504 |
|
| 505 |
// Check for convergence |
| 506 |
// One root found |
| 507 |
|
| 508 |
if (l == n) { |
| 509 |
H[n][n] = H[n][n] + exshift; |
| 510 |
d[n] = H[n][n]; |
| 511 |
e[n] = 0.0; |
| 512 |
n--; |
| 513 |
iter = 0; |
| 514 |
|
| 515 |
// Two roots found |
| 516 |
|
| 517 |
} else if (l == n-1) { |
| 518 |
w = H[n][n-1] * H[n-1][n]; |
| 519 |
p = (H[n-1][n-1] - H[n][n]) / 2.0; |
| 520 |
q = p * p + w; |
| 521 |
z = sqrt(abs(q)); |
| 522 |
H[n][n] = H[n][n] + exshift; |
| 523 |
H[n-1][n-1] = H[n-1][n-1] + exshift; |
| 524 |
x = H[n][n]; |
| 525 |
|
| 526 |
// Real pair |
| 527 |
|
| 528 |
if (q >= 0) { |
| 529 |
if (p >= 0) { |
| 530 |
z = p + z; |
| 531 |
} else { |
| 532 |
z = p - z; |
| 533 |
} |
| 534 |
d[n-1] = x + z; |
| 535 |
d[n] = d[n-1]; |
| 536 |
if (z != 0.0) { |
| 537 |
d[n] = x - w / z; |
| 538 |
} |
| 539 |
e[n-1] = 0.0; |
| 540 |
e[n] = 0.0; |
| 541 |
x = H[n][n-1]; |
| 542 |
s = abs(x) + abs(z); |
| 543 |
p = x / s; |
| 544 |
q = z / s; |
| 545 |
r = sqrt(p * p+q * q); |
| 546 |
p = p / r; |
| 547 |
q = q / r; |
| 548 |
|
| 549 |
// Row modification |
| 550 |
|
| 551 |
for (int j = n-1; j < nn; j++) { |
| 552 |
z = H[n-1][j]; |
| 553 |
H[n-1][j] = q * z + p * H[n][j]; |
| 554 |
H[n][j] = q * H[n][j] - p * z; |
| 555 |
} |
| 556 |
|
| 557 |
// Column modification |
| 558 |
|
| 559 |
for (int i = 0; i <= n; i++) { |
| 560 |
z = H[i][n-1]; |
| 561 |
H[i][n-1] = q * z + p * H[i][n]; |
| 562 |
H[i][n] = q * H[i][n] - p * z; |
| 563 |
} |
| 564 |
|
| 565 |
// Accumulate transformations |
| 566 |
|
| 567 |
for (int i = low; i <= high; i++) { |
| 568 |
z = V[i][n-1]; |
| 569 |
V[i][n-1] = q * z + p * V[i][n]; |
| 570 |
V[i][n] = q * V[i][n] - p * z; |
| 571 |
} |
| 572 |
|
| 573 |
// Complex pair |
| 574 |
|
| 575 |
} else { |
| 576 |
d[n-1] = x + p; |
| 577 |
d[n] = x + p; |
| 578 |
e[n-1] = z; |
| 579 |
e[n] = -z; |
| 580 |
} |
| 581 |
n = n - 2; |
| 582 |
iter = 0; |
| 583 |
|
| 584 |
// No convergence yet |
| 585 |
|
| 586 |
} else { |
| 587 |
|
| 588 |
// Form shift |
| 589 |
|
| 590 |
x = H[n][n]; |
| 591 |
y = 0.0; |
| 592 |
w = 0.0; |
| 593 |
if (l < n) { |
| 594 |
y = H[n-1][n-1]; |
| 595 |
w = H[n][n-1] * H[n-1][n]; |
| 596 |
} |
| 597 |
|
| 598 |
// Wilkinson's original ad hoc shift |
| 599 |
|
| 600 |
if (iter == 10) { |
| 601 |
exshift += x; |
| 602 |
for (int i = low; i <= n; i++) { |
| 603 |
H[i][i] -= x; |
| 604 |
} |
| 605 |
s = abs(H[n][n-1]) + abs(H[n-1][n-2]); |
| 606 |
x = y = 0.75 * s; |
| 607 |
w = -0.4375 * s * s; |
| 608 |
} |
| 609 |
|
| 610 |
// MATLAB's new ad hoc shift |
| 611 |
|
| 612 |
if (iter == 30) { |
| 613 |
s = (y - x) / 2.0; |
| 614 |
s = s * s + w; |
| 615 |
if (s > 0) { |
| 616 |
s = sqrt(s); |
| 617 |
if (y < x) { |
| 618 |
s = -s; |
| 619 |
} |
| 620 |
s = x - w / ((y - x) / 2.0 + s); |
| 621 |
for (int i = low; i <= n; i++) { |
| 622 |
H[i][i] -= s; |
| 623 |
} |
| 624 |
exshift += s; |
| 625 |
x = y = w = 0.964; |
| 626 |
} |
| 627 |
} |
| 628 |
|
| 629 |
iter = iter + 1; // (Could check iteration count here.) |
| 630 |
|
| 631 |
// Look for two consecutive small sub-diagonal elements |
| 632 |
|
| 633 |
int m = n-2; |
| 634 |
while (m >= l) { |
| 635 |
z = H[m][m]; |
| 636 |
r = x - z; |
| 637 |
s = y - z; |
| 638 |
p = (r * s - w) / H[m+1][m] + H[m][m+1]; |
| 639 |
q = H[m+1][m+1] - z - r - s; |
| 640 |
r = H[m+2][m+1]; |
| 641 |
s = abs(p) + abs(q) + abs(r); |
| 642 |
p = p / s; |
| 643 |
q = q / s; |
| 644 |
r = r / s; |
| 645 |
if (m == l) { |
| 646 |
break; |
| 647 |
} |
| 648 |
if (abs(H[m][m-1]) * (abs(q) + abs(r)) < |
| 649 |
eps * (abs(p) * (abs(H[m-1][m-1]) + abs(z) + |
| 650 |
abs(H[m+1][m+1])))) { |
| 651 |
break; |
| 652 |
} |
| 653 |
m--; |
| 654 |
} |
| 655 |
|
| 656 |
for (int i = m+2; i <= n; i++) { |
| 657 |
H[i][i-2] = 0.0; |
| 658 |
if (i > m+2) { |
| 659 |
H[i][i-3] = 0.0; |
| 660 |
} |
| 661 |
} |
| 662 |
|
| 663 |
// Double QR step involving rows l:n and columns m:n |
| 664 |
|
| 665 |
for (int k = m; k <= n-1; k++) { |
| 666 |
int notlast = (k != n-1); |
| 667 |
if (k != m) { |
| 668 |
p = H[k][k-1]; |
| 669 |
q = H[k+1][k-1]; |
| 670 |
r = (notlast ? H[k+2][k-1] : 0.0); |
| 671 |
x = abs(p) + abs(q) + abs(r); |
| 672 |
if (x != 0.0) { |
| 673 |
p = p / x; |
| 674 |
q = q / x; |
| 675 |
r = r / x; |
| 676 |
} |
| 677 |
} |
| 678 |
if (x == 0.0) { |
| 679 |
break; |
| 680 |
} |
| 681 |
s = sqrt(p * p + q * q + r * r); |
| 682 |
if (p < 0) { |
| 683 |
s = -s; |
| 684 |
} |
| 685 |
if (s != 0) { |
| 686 |
if (k != m) { |
| 687 |
H[k][k-1] = -s * x; |
| 688 |
} else if (l != m) { |
| 689 |
H[k][k-1] = -H[k][k-1]; |
| 690 |
} |
| 691 |
p = p + s; |
| 692 |
x = p / s; |
| 693 |
y = q / s; |
| 694 |
z = r / s; |
| 695 |
q = q / p; |
| 696 |
r = r / p; |
| 697 |
|
| 698 |
// Row modification |
| 699 |
|
| 700 |
for (int j = k; j < nn; j++) { |
| 701 |
p = H[k][j] + q * H[k+1][j]; |
| 702 |
if (notlast) { |
| 703 |
p = p + r * H[k+2][j]; |
| 704 |
H[k+2][j] = H[k+2][j] - p * z; |
| 705 |
} |
| 706 |
H[k][j] = H[k][j] - p * x; |
| 707 |
H[k+1][j] = H[k+1][j] - p * y; |
| 708 |
} |
| 709 |
|
| 710 |
// Column modification |
| 711 |
|
| 712 |
for (int i = 0; i <= min(n,k+3); i++) { |
| 713 |
p = x * H[i][k] + y * H[i][k+1]; |
| 714 |
if (notlast) { |
| 715 |
p = p + z * H[i][k+2]; |
| 716 |
H[i][k+2] = H[i][k+2] - p * r; |
| 717 |
} |
| 718 |
H[i][k] = H[i][k] - p; |
| 719 |
H[i][k+1] = H[i][k+1] - p * q; |
| 720 |
} |
| 721 |
|
| 722 |
// Accumulate transformations |
| 723 |
|
| 724 |
for (int i = low; i <= high; i++) { |
| 725 |
p = x * V[i][k] + y * V[i][k+1]; |
| 726 |
if (notlast) { |
| 727 |
p = p + z * V[i][k+2]; |
| 728 |
V[i][k+2] = V[i][k+2] - p * r; |
| 729 |
} |
| 730 |
V[i][k] = V[i][k] - p; |
| 731 |
V[i][k+1] = V[i][k+1] - p * q; |
| 732 |
} |
| 733 |
} // (s != 0) |
| 734 |
} // k loop |
| 735 |
} // check convergence |
| 736 |
} // while (n >= low) |
| 737 |
|
| 738 |
// Backsubstitute to find vectors of upper triangular form |
| 739 |
|
| 740 |
if (norm == 0.0) { |
| 741 |
return; |
| 742 |
} |
| 743 |
|
| 744 |
for (n = nn-1; n >= 0; n--) { |
| 745 |
p = d[n]; |
| 746 |
q = e[n]; |
| 747 |
|
| 748 |
// Real vector |
| 749 |
|
| 750 |
if (q == 0) { |
| 751 |
int l = n; |
| 752 |
H[n][n] = 1.0; |
| 753 |
for (int i = n-1; i >= 0; i--) { |
| 754 |
w = H[i][i] - p; |
| 755 |
r = 0.0; |
| 756 |
for (int j = l; j <= n; j++) { |
| 757 |
r = r + H[i][j] * H[j][n]; |
| 758 |
} |
| 759 |
if (e[i] < 0.0) { |
| 760 |
z = w; |
| 761 |
s = r; |
| 762 |
} else { |
| 763 |
l = i; |
| 764 |
if (e[i] == 0.0) { |
| 765 |
if (w != 0.0) { |
| 766 |
H[i][n] = -r / w; |
| 767 |
} else { |
| 768 |
H[i][n] = -r / (eps * norm); |
| 769 |
} |
| 770 |
|
| 771 |
// Solve real equations |
| 772 |
|
| 773 |
} else { |
| 774 |
x = H[i][i+1]; |
| 775 |
y = H[i+1][i]; |
| 776 |
q = (d[i] - p) * (d[i] - p) + e[i] * e[i]; |
| 777 |
t = (x * s - z * r) / q; |
| 778 |
H[i][n] = t; |
| 779 |
if (abs(x) > abs(z)) { |
| 780 |
H[i+1][n] = (-r - w * t) / x; |
| 781 |
} else { |
| 782 |
H[i+1][n] = (-s - y * t) / z; |
| 783 |
} |
| 784 |
} |
| 785 |
|
| 786 |
// Overflow control |
| 787 |
|
| 788 |
t = abs(H[i][n]); |
| 789 |
if ((eps * t) * t > 1) { |
| 790 |
for (int j = i; j <= n; j++) { |
| 791 |
H[j][n] = H[j][n] / t; |
| 792 |
} |
| 793 |
} |
| 794 |
} |
| 795 |
} |
| 796 |
|
| 797 |
// Complex vector |
| 798 |
|
| 799 |
} else if (q < 0) { |
| 800 |
int l = n-1; |
| 801 |
|
| 802 |
// Last vector component imaginary so matrix is triangular |
| 803 |
|
| 804 |
if (abs(H[n][n-1]) > abs(H[n-1][n])) { |
| 805 |
H[n-1][n-1] = q / H[n][n-1]; |
| 806 |
H[n-1][n] = -(H[n][n] - p) / H[n][n-1]; |
| 807 |
} else { |
| 808 |
cdiv(0.0,-H[n-1][n],H[n-1][n-1]-p,q); |
| 809 |
H[n-1][n-1] = cdivr; |
| 810 |
H[n-1][n] = cdivi; |
| 811 |
} |
| 812 |
H[n][n-1] = 0.0; |
| 813 |
H[n][n] = 1.0; |
| 814 |
for (int i = n-2; i >= 0; i--) { |
| 815 |
Real ra,sa,vr,vi; |
| 816 |
ra = 0.0; |
| 817 |
sa = 0.0; |
| 818 |
for (int j = l; j <= n; j++) { |
| 819 |
ra = ra + H[i][j] * H[j][n-1]; |
| 820 |
sa = sa + H[i][j] * H[j][n]; |
| 821 |
} |
| 822 |
w = H[i][i] - p; |
| 823 |
|
| 824 |
if (e[i] < 0.0) { |
| 825 |
z = w; |
| 826 |
r = ra; |
| 827 |
s = sa; |
| 828 |
} else { |
| 829 |
l = i; |
| 830 |
if (e[i] == 0) { |
| 831 |
cdiv(-ra,-sa,w,q); |
| 832 |
H[i][n-1] = cdivr; |
| 833 |
H[i][n] = cdivi; |
| 834 |
} else { |
| 835 |
|
| 836 |
// Solve complex equations |
| 837 |
|
| 838 |
x = H[i][i+1]; |
| 839 |
y = H[i+1][i]; |
| 840 |
vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q; |
| 841 |
vi = (d[i] - p) * 2.0 * q; |
| 842 |
if ((vr == 0.0) && (vi == 0.0)) { |
| 843 |
vr = eps * norm * (abs(w) + abs(q) + |
| 844 |
abs(x) + abs(y) + abs(z)); |
| 845 |
} |
| 846 |
cdiv(x*r-z*ra+q*sa,x*s-z*sa-q*ra,vr,vi); |
| 847 |
H[i][n-1] = cdivr; |
| 848 |
H[i][n] = cdivi; |
| 849 |
if (abs(x) > (abs(z) + abs(q))) { |
| 850 |
H[i+1][n-1] = (-ra - w * H[i][n-1] + q * H[i][n]) / x; |
| 851 |
H[i+1][n] = (-sa - w * H[i][n] - q * H[i][n-1]) / x; |
| 852 |
} else { |
| 853 |
cdiv(-r-y*H[i][n-1],-s-y*H[i][n],z,q); |
| 854 |
H[i+1][n-1] = cdivr; |
| 855 |
H[i+1][n] = cdivi; |
| 856 |
} |
| 857 |
} |
| 858 |
|
| 859 |
// Overflow control |
| 860 |
|
| 861 |
t = max(abs(H[i][n-1]),abs(H[i][n])); |
| 862 |
if ((eps * t) * t > 1) { |
| 863 |
for (int j = i; j <= n; j++) { |
| 864 |
H[j][n-1] = H[j][n-1] / t; |
| 865 |
H[j][n] = H[j][n] / t; |
| 866 |
} |
| 867 |
} |
| 868 |
} |
| 869 |
} |
| 870 |
} |
| 871 |
} |
| 872 |
|
| 873 |
// Vectors of isolated roots |
| 874 |
|
| 875 |
for (int i = 0; i < nn; i++) { |
| 876 |
if (i < low || i > high) { |
| 877 |
for (int j = i; j < nn; j++) { |
| 878 |
V[i][j] = H[i][j]; |
| 879 |
} |
| 880 |
} |
| 881 |
} |
| 882 |
|
| 883 |
// Back transformation to get eigenvectors of original matrix |
| 884 |
|
| 885 |
for (int j = nn-1; j >= low; j--) { |
| 886 |
for (int i = low; i <= high; i++) { |
| 887 |
z = 0.0; |
| 888 |
for (int k = low; k <= min(j,high); k++) { |
| 889 |
z = z + V[i][k] * H[k][j]; |
| 890 |
} |
| 891 |
V[i][j] = z; |
| 892 |
} |
| 893 |
} |
| 894 |
} |
| 895 |
|
| 896 |
public: |
| 897 |
|
| 898 |
|
| 899 |
/** Check for symmetry, then construct the eigenvalue decomposition |
| 900 |
@param A Square real (non-complex) matrix |
| 901 |
*/ |
| 902 |
|
| 903 |
Eigenvalue(const TNT::Array2D<Real> &A) { |
| 904 |
n = A.dim2(); |
| 905 |
V = Array2D<Real>(n,n); |
| 906 |
d = Array1D<Real>(n); |
| 907 |
e = Array1D<Real>(n); |
| 908 |
|
| 909 |
issymmetric = 1; |
| 910 |
for (int j = 0; (j < n) && issymmetric; j++) { |
| 911 |
for (int i = 0; (i < n) && issymmetric; i++) { |
| 912 |
issymmetric = (A[i][j] == A[j][i]); |
| 913 |
} |
| 914 |
} |
| 915 |
|
| 916 |
if (issymmetric) { |
| 917 |
for (int i = 0; i < n; i++) { |
| 918 |
for (int j = 0; j < n; j++) { |
| 919 |
V[i][j] = A[i][j]; |
| 920 |
} |
| 921 |
} |
| 922 |
|
| 923 |
// Tridiagonalize. |
| 924 |
tred2(); |
| 925 |
|
| 926 |
// Diagonalize. |
| 927 |
tql2(); |
| 928 |
|
| 929 |
} else { |
| 930 |
H = TNT::Array2D<Real>(n,n); |
| 931 |
ort = TNT::Array1D<Real>(n); |
| 932 |
|
| 933 |
for (int j = 0; j < n; j++) { |
| 934 |
for (int i = 0; i < n; i++) { |
| 935 |
H[i][j] = A[i][j]; |
| 936 |
} |
| 937 |
} |
| 938 |
|
| 939 |
// Reduce to Hessenberg form. |
| 940 |
orthes(); |
| 941 |
|
| 942 |
// Reduce Hessenberg to real Schur form. |
| 943 |
hqr2(); |
| 944 |
} |
| 945 |
} |
| 946 |
|
| 947 |
|
| 948 |
/** Return the eigenvector matrix |
| 949 |
@return V |
| 950 |
*/ |
| 951 |
|
| 952 |
void getV (TNT::Array2D<Real> &V_) { |
| 953 |
V_ = V; |
| 954 |
return; |
| 955 |
} |
| 956 |
|
| 957 |
/** Return the real parts of the eigenvalues |
| 958 |
@return real(diag(D)) |
| 959 |
*/ |
| 960 |
|
| 961 |
void getRealEigenvalues (TNT::Array1D<Real> &d_) { |
| 962 |
d_ = d; |
| 963 |
return ; |
| 964 |
} |
| 965 |
|
| 966 |
/** Return the imaginary parts of the eigenvalues |
| 967 |
in parameter e_. |
| 968 |
|
| 969 |
@pararm e_: new matrix with imaginary parts of the eigenvalues. |
| 970 |
*/ |
| 971 |
void getImagEigenvalues (TNT::Array1D<Real> &e_) { |
| 972 |
e_ = e; |
| 973 |
return; |
| 974 |
} |
| 975 |
|
| 976 |
|
| 977 |
/** |
| 978 |
Computes the block diagonal eigenvalue matrix. |
| 979 |
If the original matrix A is not symmetric, then the eigenvalue |
| 980 |
matrix D is block diagonal with the real eigenvalues in 1-by-1 |
| 981 |
blocks and any complex eigenvalues, |
| 982 |
a + i*b, in 2-by-2 blocks, [a, b; -b, a]. That is, if the complex |
| 983 |
eigenvalues look like |
| 984 |
<pre> |
| 985 |
|
| 986 |
u + iv . . . . . |
| 987 |
. u - iv . . . . |
| 988 |
. . a + ib . . . |
| 989 |
. . . a - ib . . |
| 990 |
. . . . x . |
| 991 |
. . . . . y |
| 992 |
</pre> |
| 993 |
then D looks like |
| 994 |
<pre> |
| 995 |
|
| 996 |
u v . . . . |
| 997 |
-v u . . . . |
| 998 |
. . a b . . |
| 999 |
. . -b a . . |
| 1000 |
. . . . x . |
| 1001 |
. . . . . y |
| 1002 |
</pre> |
| 1003 |
This keeps V a real matrix in both symmetric and non-symmetric |
| 1004 |
cases, and A*V = V*D. |
| 1005 |
|
| 1006 |
@param D: upon return, the matrix is filled with the block diagonal |
| 1007 |
eigenvalue matrix. |
| 1008 |
|
| 1009 |
*/ |
| 1010 |
void getD (TNT::Array2D<Real> &D) { |
| 1011 |
D = Array2D<Real>(n,n); |
| 1012 |
for (int i = 0; i < n; i++) { |
| 1013 |
for (int j = 0; j < n; j++) { |
| 1014 |
D[i][j] = 0.0; |
| 1015 |
} |
| 1016 |
D[i][i] = d[i]; |
| 1017 |
if (e[i] > 0) { |
| 1018 |
D[i][i+1] = e[i]; |
| 1019 |
} else if (e[i] < 0) { |
| 1020 |
D[i][i-1] = e[i]; |
| 1021 |
} |
| 1022 |
} |
| 1023 |
} |
| 1024 |
}; |
| 1025 |
|
| 1026 |
} //namespace JAMA |
| 1027 |
|
| 1028 |
|
| 1029 |
#endif |
| 1030 |
// JAMA_EIG_H |