| 1 |
#ifndef JAMA_LU_H |
| 2 |
#define JAMA_LU_H |
| 3 |
|
| 4 |
#include "tnt_array1d.hpp" |
| 5 |
#include "tnt_array1d_utils.hpp" |
| 6 |
#include "tnt_array2d.hpp" |
| 7 |
#include "tnt_array2d_utils.hpp" |
| 8 |
#include "tnt_math_utils.hpp" |
| 9 |
|
| 10 |
#include <algorithm> |
| 11 |
//for min(), max() below |
| 12 |
|
| 13 |
using namespace TNT; |
| 14 |
using namespace std; |
| 15 |
|
| 16 |
namespace JAMA |
| 17 |
{ |
| 18 |
|
| 19 |
/** LU Decomposition. |
| 20 |
<P> |
| 21 |
For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n |
| 22 |
unit lower triangular matrix L, an n-by-n upper triangular matrix U, |
| 23 |
and a permutation vector piv of length m so that A(piv,:) = L*U. |
| 24 |
If m < n, then L is m-by-m and U is m-by-n. |
| 25 |
<P> |
| 26 |
The LU decompostion with pivoting always exists, even if the matrix is |
| 27 |
singular, so the constructor will never fail. The primary use of the |
| 28 |
LU decomposition is in the solution of square systems of simultaneous |
| 29 |
linear equations. This will fail if isNonsingular() returns false. |
| 30 |
*/ |
| 31 |
template <class Real> |
| 32 |
class LU |
| 33 |
{ |
| 34 |
|
| 35 |
|
| 36 |
|
| 37 |
/* Array for internal storage of decomposition. */ |
| 38 |
Array2D<Real> LU_; |
| 39 |
int m, n, pivsign; |
| 40 |
Array1D<int> piv; |
| 41 |
|
| 42 |
|
| 43 |
Array2D<Real> permute_copy(const Array2D<Real> &A, |
| 44 |
const Array1D<int> &piv, int j0, int j1) |
| 45 |
{ |
| 46 |
int piv_length = piv.dim(); |
| 47 |
|
| 48 |
Array2D<Real> X(piv_length, j1-j0+1); |
| 49 |
|
| 50 |
|
| 51 |
for (int i = 0; i < piv_length; i++) |
| 52 |
for (int j = j0; j <= j1; j++) |
| 53 |
X[i][j-j0] = A[piv[i]][j]; |
| 54 |
|
| 55 |
return X; |
| 56 |
} |
| 57 |
|
| 58 |
Array1D<Real> permute_copy(const Array1D<Real> &A, |
| 59 |
const Array1D<int> &piv) |
| 60 |
{ |
| 61 |
int piv_length = piv.dim(); |
| 62 |
if (piv_length != A.dim()) |
| 63 |
return Array1D<Real>(); |
| 64 |
|
| 65 |
Array1D<Real> x(piv_length); |
| 66 |
|
| 67 |
|
| 68 |
for (int i = 0; i < piv_length; i++) |
| 69 |
x[i] = A[piv[i]]; |
| 70 |
|
| 71 |
return x; |
| 72 |
} |
| 73 |
|
| 74 |
|
| 75 |
public : |
| 76 |
|
| 77 |
/** LU Decomposition |
| 78 |
@param A Rectangular matrix |
| 79 |
@return LU Decomposition object to access L, U and piv. |
| 80 |
*/ |
| 81 |
|
| 82 |
LU (const Array2D<Real> &A) : LU_(A.copy()), m(A.dim1()), n(A.dim2()), |
| 83 |
piv(A.dim1()) |
| 84 |
|
| 85 |
{ |
| 86 |
|
| 87 |
// Use a "left-looking", dot-product, Crout/Doolittle algorithm. |
| 88 |
|
| 89 |
|
| 90 |
for (int i = 0; i < m; i++) { |
| 91 |
piv[i] = i; |
| 92 |
} |
| 93 |
pivsign = 1; |
| 94 |
Real *LUrowi = 0;; |
| 95 |
Array1D<Real> LUcolj(m); |
| 96 |
|
| 97 |
// Outer loop. |
| 98 |
|
| 99 |
for (int j = 0; j < n; j++) { |
| 100 |
|
| 101 |
// Make a copy of the j-th column to localize references. |
| 102 |
|
| 103 |
for (int i = 0; i < m; i++) { |
| 104 |
LUcolj[i] = LU_[i][j]; |
| 105 |
} |
| 106 |
|
| 107 |
// Apply previous transformations. |
| 108 |
|
| 109 |
for (int i = 0; i < m; i++) { |
| 110 |
LUrowi = LU_[i]; |
| 111 |
|
| 112 |
// Most of the time is spent in the following dot product. |
| 113 |
|
| 114 |
int kmax = min(i,j); |
| 115 |
double s = 0.0; |
| 116 |
for (int k = 0; k < kmax; k++) { |
| 117 |
s += LUrowi[k]*LUcolj[k]; |
| 118 |
} |
| 119 |
|
| 120 |
LUrowi[j] = LUcolj[i] -= s; |
| 121 |
} |
| 122 |
|
| 123 |
// Find pivot and exchange if necessary. |
| 124 |
|
| 125 |
int p = j; |
| 126 |
for (int i = j+1; i < m; i++) { |
| 127 |
if (abs(LUcolj[i]) > abs(LUcolj[p])) { |
| 128 |
p = i; |
| 129 |
} |
| 130 |
} |
| 131 |
if (p != j) { |
| 132 |
int k=0; |
| 133 |
for (k = 0; k < n; k++) { |
| 134 |
double t = LU_[p][k]; |
| 135 |
LU_[p][k] = LU_[j][k]; |
| 136 |
LU_[j][k] = t; |
| 137 |
} |
| 138 |
k = piv[p]; |
| 139 |
piv[p] = piv[j]; |
| 140 |
piv[j] = k; |
| 141 |
pivsign = -pivsign; |
| 142 |
} |
| 143 |
|
| 144 |
// Compute multipliers. |
| 145 |
|
| 146 |
if ((j < m) && (LU_[j][j] != 0.0)) { |
| 147 |
for (int i = j+1; i < m; i++) { |
| 148 |
LU_[i][j] /= LU_[j][j]; |
| 149 |
} |
| 150 |
} |
| 151 |
} |
| 152 |
} |
| 153 |
|
| 154 |
|
| 155 |
/** Is the matrix nonsingular? |
| 156 |
@return 1 (true) if upper triangular factor U (and hence A) |
| 157 |
is nonsingular, 0 otherwise. |
| 158 |
*/ |
| 159 |
|
| 160 |
int isNonsingular () { |
| 161 |
for (int j = 0; j < n; j++) { |
| 162 |
if (LU_[j][j] == 0) |
| 163 |
return 0; |
| 164 |
} |
| 165 |
return 1; |
| 166 |
} |
| 167 |
|
| 168 |
/** Return lower triangular factor |
| 169 |
@return L |
| 170 |
*/ |
| 171 |
|
| 172 |
Array2D<Real> getL () { |
| 173 |
Array2D<Real> L_(m,n); |
| 174 |
for (int i = 0; i < m; i++) { |
| 175 |
for (int j = 0; j < n; j++) { |
| 176 |
if (i > j) { |
| 177 |
L_[i][j] = LU_[i][j]; |
| 178 |
} else if (i == j) { |
| 179 |
L_[i][j] = 1.0; |
| 180 |
} else { |
| 181 |
L_[i][j] = 0.0; |
| 182 |
} |
| 183 |
} |
| 184 |
} |
| 185 |
return L_; |
| 186 |
} |
| 187 |
|
| 188 |
/** Return upper triangular factor |
| 189 |
@return U portion of LU factorization. |
| 190 |
*/ |
| 191 |
|
| 192 |
Array2D<Real> getU () { |
| 193 |
Array2D<Real> U_(n,n); |
| 194 |
for (int i = 0; i < n; i++) { |
| 195 |
for (int j = 0; j < n; j++) { |
| 196 |
if (i <= j) { |
| 197 |
U_[i][j] = LU_[i][j]; |
| 198 |
} else { |
| 199 |
U_[i][j] = 0.0; |
| 200 |
} |
| 201 |
} |
| 202 |
} |
| 203 |
return U_; |
| 204 |
} |
| 205 |
|
| 206 |
/** Return pivot permutation vector |
| 207 |
@return piv |
| 208 |
*/ |
| 209 |
|
| 210 |
Array1D<int> getPivot () { |
| 211 |
return piv; |
| 212 |
} |
| 213 |
|
| 214 |
|
| 215 |
/** Compute determinant using LU factors. |
| 216 |
@return determinant of A, or 0 if A is not square. |
| 217 |
*/ |
| 218 |
|
| 219 |
Real det () { |
| 220 |
if (m != n) { |
| 221 |
return Real(0); |
| 222 |
} |
| 223 |
Real d = Real(pivsign); |
| 224 |
for (int j = 0; j < n; j++) { |
| 225 |
d *= LU_[j][j]; |
| 226 |
} |
| 227 |
return d; |
| 228 |
} |
| 229 |
|
| 230 |
/** Solve A*X = B |
| 231 |
@param B A Matrix with as many rows as A and any number of columns. |
| 232 |
@return X so that L*U*X = B(piv,:), if B is nonconformant, returns |
| 233 |
0x0 (null) array. |
| 234 |
*/ |
| 235 |
|
| 236 |
Array2D<Real> solve (const Array2D<Real> &B) |
| 237 |
{ |
| 238 |
|
| 239 |
/* Dimensions: A is mxn, X is nxk, B is mxk */ |
| 240 |
|
| 241 |
if (B.dim1() != m) { |
| 242 |
return Array2D<Real>(0,0); |
| 243 |
} |
| 244 |
if (!isNonsingular()) { |
| 245 |
return Array2D<Real>(0,0); |
| 246 |
} |
| 247 |
|
| 248 |
// Copy right hand side with pivoting |
| 249 |
int nx = B.dim2(); |
| 250 |
|
| 251 |
|
| 252 |
Array2D<Real> X = permute_copy(B, piv, 0, nx-1); |
| 253 |
|
| 254 |
// Solve L*Y = B(piv,:) |
| 255 |
for (int k = 0; k < n; k++) { |
| 256 |
for (int i = k+1; i < n; i++) { |
| 257 |
for (int j = 0; j < nx; j++) { |
| 258 |
X[i][j] -= X[k][j]*LU_[i][k]; |
| 259 |
} |
| 260 |
} |
| 261 |
} |
| 262 |
// Solve U*X = Y; |
| 263 |
for (int k = n-1; k >= 0; k--) { |
| 264 |
for (int j = 0; j < nx; j++) { |
| 265 |
X[k][j] /= LU_[k][k]; |
| 266 |
} |
| 267 |
for (int i = 0; i < k; i++) { |
| 268 |
for (int j = 0; j < nx; j++) { |
| 269 |
X[i][j] -= X[k][j]*LU_[i][k]; |
| 270 |
} |
| 271 |
} |
| 272 |
} |
| 273 |
return X; |
| 274 |
} |
| 275 |
|
| 276 |
|
| 277 |
/** Solve A*x = b, where x and b are vectors of length equal |
| 278 |
to the number of rows in A. |
| 279 |
|
| 280 |
@param b a vector (Array1D> of length equal to the first dimension |
| 281 |
of A. |
| 282 |
@return x a vector (Array1D> so that L*U*x = b(piv), if B is nonconformant, |
| 283 |
returns 0x0 (null) array. |
| 284 |
*/ |
| 285 |
|
| 286 |
Array1D<Real> solve (const Array1D<Real> &b) |
| 287 |
{ |
| 288 |
|
| 289 |
/* Dimensions: A is mxn, X is nxk, B is mxk */ |
| 290 |
|
| 291 |
if (b.dim1() != m) { |
| 292 |
return Array1D<Real>(); |
| 293 |
} |
| 294 |
if (!isNonsingular()) { |
| 295 |
return Array1D<Real>(); |
| 296 |
} |
| 297 |
|
| 298 |
|
| 299 |
Array1D<Real> x = permute_copy(b, piv); |
| 300 |
|
| 301 |
// Solve L*Y = B(piv) |
| 302 |
for (int k = 0; k < n; k++) { |
| 303 |
for (int i = k+1; i < n; i++) { |
| 304 |
x[i] -= x[k]*LU_[i][k]; |
| 305 |
} |
| 306 |
} |
| 307 |
|
| 308 |
// Solve U*X = Y; |
| 309 |
for (int k = n-1; k >= 0; k--) { |
| 310 |
x[k] /= LU_[k][k]; |
| 311 |
for (int i = 0; i < k; i++) |
| 312 |
x[i] -= x[k]*LU_[i][k]; |
| 313 |
} |
| 314 |
|
| 315 |
|
| 316 |
return x; |
| 317 |
} |
| 318 |
|
| 319 |
}; /* class LU */ |
| 320 |
|
| 321 |
} /* namespace JAMA */ |
| 322 |
|
| 323 |
#endif |
| 324 |
/* JAMA_LU_H */ |