| 1 |
#ifndef JAMA_QR_H |
| 2 |
#define JAMA_QR_H |
| 3 |
|
| 4 |
#include "tnt_array1d.hpp" |
| 5 |
#include "tnt_array2d.hpp" |
| 6 |
#include "tnt_math_utils.hpp" |
| 7 |
|
| 8 |
namespace JAMA |
| 9 |
{ |
| 10 |
|
| 11 |
/** |
| 12 |
<p> |
| 13 |
Classical QR Decompisition: |
| 14 |
for an m-by-n matrix A with m >= n, the QR decomposition is an m-by-n |
| 15 |
orthogonal matrix Q and an n-by-n upper triangular matrix R so that |
| 16 |
A = Q*R. |
| 17 |
<P> |
| 18 |
The QR decompostion always exists, even if the matrix does not have |
| 19 |
full rank, so the constructor will never fail. The primary use of the |
| 20 |
QR decomposition is in the least squares solution of nonsquare systems |
| 21 |
of simultaneous linear equations. This will fail if isFullRank() |
| 22 |
returns 0 (false). |
| 23 |
|
| 24 |
<p> |
| 25 |
The Q and R factors can be retrived via the getQ() and getR() |
| 26 |
methods. Furthermore, a solve() method is provided to find the |
| 27 |
least squares solution of Ax=b using the QR factors. |
| 28 |
|
| 29 |
<p> |
| 30 |
(Adapted from JAMA, a Java Matrix Library, developed by jointly |
| 31 |
by the Mathworks and NIST; see http://math.nist.gov/javanumerics/jama). |
| 32 |
*/ |
| 33 |
|
| 34 |
template <class Real> |
| 35 |
class QR { |
| 36 |
|
| 37 |
|
| 38 |
/** Array for internal storage of decomposition. |
| 39 |
@serial internal array storage. |
| 40 |
*/ |
| 41 |
|
| 42 |
TNT::Array2D<Real> QR_; |
| 43 |
|
| 44 |
/** Row and column dimensions. |
| 45 |
@serial column dimension. |
| 46 |
@serial row dimension. |
| 47 |
*/ |
| 48 |
int m, n; |
| 49 |
|
| 50 |
/** Array for internal storage of diagonal of R. |
| 51 |
@serial diagonal of R. |
| 52 |
*/ |
| 53 |
TNT::Array1D<Real> Rdiag; |
| 54 |
|
| 55 |
|
| 56 |
public: |
| 57 |
|
| 58 |
/** |
| 59 |
Create a QR factorization object for A. |
| 60 |
|
| 61 |
@param A rectangular (m>=n) matrix. |
| 62 |
*/ |
| 63 |
QR(const TNT::Array2D<Real> &A) /* constructor */ |
| 64 |
{ |
| 65 |
QR_ = A.copy(); |
| 66 |
m = A.dim1(); |
| 67 |
n = A.dim2(); |
| 68 |
Rdiag = TNT::Array1D<Real>(n); |
| 69 |
int i=0, j=0, k=0; |
| 70 |
|
| 71 |
// Main loop. |
| 72 |
for (k = 0; k < n; k++) { |
| 73 |
// Compute 2-norm of k-th column without under/overflow. |
| 74 |
Real nrm = 0; |
| 75 |
for (i = k; i < m; i++) { |
| 76 |
nrm = TNT::hypot(nrm,QR_[i][k]); |
| 77 |
} |
| 78 |
|
| 79 |
if (nrm != 0.0) { |
| 80 |
// Form k-th Householder vector. |
| 81 |
if (QR_[k][k] < 0) { |
| 82 |
nrm = -nrm; |
| 83 |
} |
| 84 |
for (i = k; i < m; i++) { |
| 85 |
QR_[i][k] /= nrm; |
| 86 |
} |
| 87 |
QR_[k][k] += 1.0; |
| 88 |
|
| 89 |
// Apply transformation to remaining columns. |
| 90 |
for (j = k+1; j < n; j++) { |
| 91 |
Real s = 0.0; |
| 92 |
for (i = k; i < m; i++) { |
| 93 |
s += QR_[i][k]*QR_[i][j]; |
| 94 |
} |
| 95 |
s = -s/QR_[k][k]; |
| 96 |
for (i = k; i < m; i++) { |
| 97 |
QR_[i][j] += s*QR_[i][k]; |
| 98 |
} |
| 99 |
} |
| 100 |
} |
| 101 |
Rdiag[k] = -nrm; |
| 102 |
} |
| 103 |
} |
| 104 |
|
| 105 |
|
| 106 |
/** |
| 107 |
Flag to denote the matrix is of full rank. |
| 108 |
|
| 109 |
@return 1 if matrix is full rank, 0 otherwise. |
| 110 |
*/ |
| 111 |
int isFullRank() const |
| 112 |
{ |
| 113 |
for (int j = 0; j < n; j++) |
| 114 |
{ |
| 115 |
if (Rdiag[j] == 0) |
| 116 |
return 0; |
| 117 |
} |
| 118 |
return 1; |
| 119 |
} |
| 120 |
|
| 121 |
|
| 122 |
|
| 123 |
|
| 124 |
/** |
| 125 |
|
| 126 |
Retreive the Householder vectors from QR factorization |
| 127 |
@returns lower trapezoidal matrix whose columns define the reflections |
| 128 |
*/ |
| 129 |
|
| 130 |
TNT::Array2D<Real> getHouseholder (void) const |
| 131 |
{ |
| 132 |
TNT::Array2D<Real> H(m,n); |
| 133 |
|
| 134 |
/* note: H is completely filled in by algorithm, so |
| 135 |
initializaiton of H is not necessary. |
| 136 |
*/ |
| 137 |
for (int i = 0; i < m; i++) |
| 138 |
{ |
| 139 |
for (int j = 0; j < n; j++) |
| 140 |
{ |
| 141 |
if (i >= j) { |
| 142 |
H[i][j] = QR_[i][j]; |
| 143 |
} else { |
| 144 |
H[i][j] = 0.0; |
| 145 |
} |
| 146 |
} |
| 147 |
} |
| 148 |
return H; |
| 149 |
} |
| 150 |
|
| 151 |
|
| 152 |
|
| 153 |
/** Return the upper triangular factor, R, of the QR factorization |
| 154 |
@return R |
| 155 |
*/ |
| 156 |
|
| 157 |
TNT::Array2D<Real> getR() const |
| 158 |
{ |
| 159 |
TNT::Array2D<Real> R(n,n); |
| 160 |
for (int i = 0; i < n; i++) { |
| 161 |
for (int j = 0; j < n; j++) { |
| 162 |
if (i < j) { |
| 163 |
R[i][j] = QR_[i][j]; |
| 164 |
} else if (i == j) { |
| 165 |
R[i][j] = Rdiag[i]; |
| 166 |
} else { |
| 167 |
R[i][j] = 0.0; |
| 168 |
} |
| 169 |
} |
| 170 |
} |
| 171 |
return R; |
| 172 |
} |
| 173 |
|
| 174 |
|
| 175 |
|
| 176 |
|
| 177 |
|
| 178 |
/** |
| 179 |
Generate and return the (economy-sized) orthogonal factor |
| 180 |
@param Q the (ecnomy-sized) orthogonal factor (Q*R=A). |
| 181 |
*/ |
| 182 |
|
| 183 |
TNT::Array2D<Real> getQ() const |
| 184 |
{ |
| 185 |
int i=0, j=0, k=0; |
| 186 |
|
| 187 |
TNT::Array2D<Real> Q(m,n); |
| 188 |
for (k = n-1; k >= 0; k--) { |
| 189 |
for (i = 0; i < m; i++) { |
| 190 |
Q[i][k] = 0.0; |
| 191 |
} |
| 192 |
Q[k][k] = 1.0; |
| 193 |
for (j = k; j < n; j++) { |
| 194 |
if (QR_[k][k] != 0) { |
| 195 |
Real s = 0.0; |
| 196 |
for (i = k; i < m; i++) { |
| 197 |
s += QR_[i][k]*Q[i][j]; |
| 198 |
} |
| 199 |
s = -s/QR_[k][k]; |
| 200 |
for (i = k; i < m; i++) { |
| 201 |
Q[i][j] += s*QR_[i][k]; |
| 202 |
} |
| 203 |
} |
| 204 |
} |
| 205 |
} |
| 206 |
return Q; |
| 207 |
} |
| 208 |
|
| 209 |
|
| 210 |
/** Least squares solution of A*x = b |
| 211 |
@param B m-length array (vector). |
| 212 |
@return x n-length array (vector) that minimizes the two norm of Q*R*X-B. |
| 213 |
If B is non-conformant, or if QR.isFullRank() is false, |
| 214 |
the routine returns a null (0-length) vector. |
| 215 |
*/ |
| 216 |
|
| 217 |
TNT::Array1D<Real> solve(const TNT::Array1D<Real> &b) const |
| 218 |
{ |
| 219 |
if (b.dim1() != m) /* arrays must be conformant */ |
| 220 |
return TNT::Array1D<Real>(); |
| 221 |
|
| 222 |
if ( !isFullRank() ) /* matrix is rank deficient */ |
| 223 |
{ |
| 224 |
return TNT::Array1D<Real>(); |
| 225 |
} |
| 226 |
|
| 227 |
TNT::Array1D<Real> x = b.copy(); |
| 228 |
|
| 229 |
// Compute Y = transpose(Q)*b |
| 230 |
for (int k = 0; k < n; k++) |
| 231 |
{ |
| 232 |
Real s = 0.0; |
| 233 |
for (int i = k; i < m; i++) |
| 234 |
{ |
| 235 |
s += QR_[i][k]*x[i]; |
| 236 |
} |
| 237 |
s = -s/QR_[k][k]; |
| 238 |
for (int i = k; i < m; i++) |
| 239 |
{ |
| 240 |
x[i] += s*QR_[i][k]; |
| 241 |
} |
| 242 |
} |
| 243 |
// Solve R*X = Y; |
| 244 |
for (int k = n-1; k >= 0; k--) |
| 245 |
{ |
| 246 |
x[k] /= Rdiag[k]; |
| 247 |
for (int i = 0; i < k; i++) { |
| 248 |
x[i] -= x[k]*QR_[i][k]; |
| 249 |
} |
| 250 |
} |
| 251 |
|
| 252 |
|
| 253 |
/* return n x nx portion of X */ |
| 254 |
TNT::Array1D<Real> x_(n); |
| 255 |
for (int i=0; i<n; i++) |
| 256 |
x_[i] = x[i]; |
| 257 |
|
| 258 |
return x_; |
| 259 |
} |
| 260 |
|
| 261 |
/** Least squares solution of A*X = B |
| 262 |
@param B m x k Array (must conform). |
| 263 |
@return X n x k Array that minimizes the two norm of Q*R*X-B. If |
| 264 |
B is non-conformant, or if QR.isFullRank() is false, |
| 265 |
the routine returns a null (0x0) array. |
| 266 |
*/ |
| 267 |
|
| 268 |
TNT::Array2D<Real> solve(const TNT::Array2D<Real> &B) const |
| 269 |
{ |
| 270 |
if (B.dim1() != m) /* arrays must be conformant */ |
| 271 |
return TNT::Array2D<Real>(0,0); |
| 272 |
|
| 273 |
if ( !isFullRank() ) /* matrix is rank deficient */ |
| 274 |
{ |
| 275 |
return TNT::Array2D<Real>(0,0); |
| 276 |
} |
| 277 |
|
| 278 |
int nx = B.dim2(); |
| 279 |
TNT::Array2D<Real> X = B.copy(); |
| 280 |
int i=0, j=0, k=0; |
| 281 |
|
| 282 |
// Compute Y = transpose(Q)*B |
| 283 |
for (k = 0; k < n; k++) { |
| 284 |
for (j = 0; j < nx; j++) { |
| 285 |
Real s = 0.0; |
| 286 |
for (i = k; i < m; i++) { |
| 287 |
s += QR_[i][k]*X[i][j]; |
| 288 |
} |
| 289 |
s = -s/QR_[k][k]; |
| 290 |
for (i = k; i < m; i++) { |
| 291 |
X[i][j] += s*QR_[i][k]; |
| 292 |
} |
| 293 |
} |
| 294 |
} |
| 295 |
// Solve R*X = Y; |
| 296 |
for (k = n-1; k >= 0; k--) { |
| 297 |
for (j = 0; j < nx; j++) { |
| 298 |
X[k][j] /= Rdiag[k]; |
| 299 |
} |
| 300 |
for (i = 0; i < k; i++) { |
| 301 |
for (j = 0; j < nx; j++) { |
| 302 |
X[i][j] -= X[k][j]*QR_[i][k]; |
| 303 |
} |
| 304 |
} |
| 305 |
} |
| 306 |
|
| 307 |
|
| 308 |
/* return n x nx portion of X */ |
| 309 |
TNT::Array2D<Real> X_(n,nx); |
| 310 |
for (i=0; i<n; i++) |
| 311 |
for (j=0; j<nx; j++) |
| 312 |
X_[i][j] = X[i][j]; |
| 313 |
|
| 314 |
return X_; |
| 315 |
} |
| 316 |
|
| 317 |
|
| 318 |
}; |
| 319 |
|
| 320 |
|
| 321 |
} |
| 322 |
// namespace JAMA |
| 323 |
|
| 324 |
#endif |
| 325 |
// JAMA_QR__H |
| 326 |
|