| 1 |
gezelter |
1336 |
#ifndef JAMA_SVD_H |
| 2 |
|
|
#define JAMA_SVD_H |
| 3 |
|
|
|
| 4 |
|
|
|
| 5 |
|
|
#include "tnt_array1d.hpp" |
| 6 |
|
|
#include "tnt_array1d_utils.hpp" |
| 7 |
|
|
#include "tnt_array2d.hpp" |
| 8 |
|
|
#include "tnt_array2d_utils.hpp" |
| 9 |
|
|
#include "tnt_math_utils.hpp" |
| 10 |
|
|
|
| 11 |
|
|
#include <algorithm> |
| 12 |
|
|
// for min(), max() below |
| 13 |
|
|
#include <cmath> |
| 14 |
|
|
// for abs() below |
| 15 |
|
|
|
| 16 |
|
|
using namespace TNT; |
| 17 |
|
|
using namespace std; |
| 18 |
|
|
|
| 19 |
|
|
namespace JAMA |
| 20 |
|
|
{ |
| 21 |
|
|
/** Singular Value Decomposition. |
| 22 |
|
|
<P> |
| 23 |
|
|
For an m-by-n matrix A with m >= n, the singular value decomposition is |
| 24 |
|
|
an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and |
| 25 |
|
|
an n-by-n orthogonal matrix V so that A = U*S*V'. |
| 26 |
|
|
<P> |
| 27 |
|
|
The singular values, sigma[k] = S[k][k], are ordered so that |
| 28 |
|
|
sigma[0] >= sigma[1] >= ... >= sigma[n-1]. |
| 29 |
|
|
<P> |
| 30 |
|
|
The singular value decompostion always exists, so the constructor will |
| 31 |
|
|
never fail. The matrix condition number and the effective numerical |
| 32 |
|
|
rank can be computed from this decomposition. |
| 33 |
|
|
|
| 34 |
|
|
<p> |
| 35 |
|
|
(Adapted from JAMA, a Java Matrix Library, developed by jointly |
| 36 |
|
|
by the Mathworks and NIST; see http://math.nist.gov/javanumerics/jama). |
| 37 |
|
|
*/ |
| 38 |
|
|
template <class Real> |
| 39 |
|
|
class SVD |
| 40 |
|
|
{ |
| 41 |
|
|
|
| 42 |
|
|
|
| 43 |
|
|
Array2D<Real> U, V; |
| 44 |
|
|
Array1D<Real> s; |
| 45 |
|
|
int m, n; |
| 46 |
|
|
|
| 47 |
|
|
public: |
| 48 |
|
|
|
| 49 |
|
|
|
| 50 |
|
|
SVD (const Array2D<Real> &Arg) { |
| 51 |
|
|
|
| 52 |
|
|
|
| 53 |
|
|
m = Arg.dim1(); |
| 54 |
|
|
n = Arg.dim2(); |
| 55 |
|
|
int nu = min(m,n); |
| 56 |
|
|
s = Array1D<Real>(min(m+1,n)); |
| 57 |
|
|
U = Array2D<Real>(m, nu, Real(0)); |
| 58 |
|
|
V = Array2D<Real>(n,n); |
| 59 |
|
|
Array1D<Real> e(n); |
| 60 |
|
|
Array1D<Real> work(m); |
| 61 |
|
|
Array2D<Real> A(Arg.copy()); |
| 62 |
|
|
int wantu = 1; /* boolean */ |
| 63 |
|
|
int wantv = 1; /* boolean */ |
| 64 |
|
|
int i=0, j=0, k=0; |
| 65 |
|
|
|
| 66 |
|
|
// Reduce A to bidiagonal form, storing the diagonal elements |
| 67 |
|
|
// in s and the super-diagonal elements in e. |
| 68 |
|
|
|
| 69 |
|
|
int nct = min(m-1,n); |
| 70 |
|
|
int nrt = max(0,min(n-2,m)); |
| 71 |
|
|
for (k = 0; k < max(nct,nrt); k++) { |
| 72 |
|
|
if (k < nct) { |
| 73 |
|
|
|
| 74 |
|
|
// Compute the transformation for the k-th column and |
| 75 |
|
|
// place the k-th diagonal in s[k]. |
| 76 |
|
|
// Compute 2-norm of k-th column without under/overflow. |
| 77 |
|
|
s[k] = 0; |
| 78 |
|
|
for (i = k; i < m; i++) { |
| 79 |
|
|
s[k] = hypot(s[k],A[i][k]); |
| 80 |
|
|
} |
| 81 |
|
|
if (s[k] != 0.0) { |
| 82 |
|
|
if (A[k][k] < 0.0) { |
| 83 |
|
|
s[k] = -s[k]; |
| 84 |
|
|
} |
| 85 |
|
|
for (i = k; i < m; i++) { |
| 86 |
|
|
A[i][k] /= s[k]; |
| 87 |
|
|
} |
| 88 |
|
|
A[k][k] += 1.0; |
| 89 |
|
|
} |
| 90 |
|
|
s[k] = -s[k]; |
| 91 |
|
|
} |
| 92 |
|
|
for (j = k+1; j < n; j++) { |
| 93 |
|
|
if ((k < nct) && (s[k] != 0.0)) { |
| 94 |
|
|
|
| 95 |
|
|
// Apply the transformation. |
| 96 |
|
|
|
| 97 |
|
|
Real t(0.0); |
| 98 |
|
|
for (i = k; i < m; i++) { |
| 99 |
|
|
t += A[i][k]*A[i][j]; |
| 100 |
|
|
} |
| 101 |
|
|
t = -t/A[k][k]; |
| 102 |
|
|
for (i = k; i < m; i++) { |
| 103 |
|
|
A[i][j] += t*A[i][k]; |
| 104 |
|
|
} |
| 105 |
|
|
} |
| 106 |
|
|
|
| 107 |
|
|
// Place the k-th row of A into e for the |
| 108 |
|
|
// subsequent calculation of the row transformation. |
| 109 |
|
|
|
| 110 |
|
|
e[j] = A[k][j]; |
| 111 |
|
|
} |
| 112 |
|
|
if (wantu & (k < nct)) { |
| 113 |
|
|
|
| 114 |
|
|
// Place the transformation in U for subsequent back |
| 115 |
|
|
// multiplication. |
| 116 |
|
|
|
| 117 |
|
|
for (i = k; i < m; i++) { |
| 118 |
|
|
U[i][k] = A[i][k]; |
| 119 |
|
|
} |
| 120 |
|
|
} |
| 121 |
|
|
if (k < nrt) { |
| 122 |
|
|
|
| 123 |
|
|
// Compute the k-th row transformation and place the |
| 124 |
|
|
// k-th super-diagonal in e[k]. |
| 125 |
|
|
// Compute 2-norm without under/overflow. |
| 126 |
|
|
e[k] = 0; |
| 127 |
|
|
for (i = k+1; i < n; i++) { |
| 128 |
|
|
e[k] = hypot(e[k],e[i]); |
| 129 |
|
|
} |
| 130 |
|
|
if (e[k] != 0.0) { |
| 131 |
|
|
if (e[k+1] < 0.0) { |
| 132 |
|
|
e[k] = -e[k]; |
| 133 |
|
|
} |
| 134 |
|
|
for (i = k+1; i < n; i++) { |
| 135 |
|
|
e[i] /= e[k]; |
| 136 |
|
|
} |
| 137 |
|
|
e[k+1] += 1.0; |
| 138 |
|
|
} |
| 139 |
|
|
e[k] = -e[k]; |
| 140 |
|
|
if ((k+1 < m) & (e[k] != 0.0)) { |
| 141 |
|
|
|
| 142 |
|
|
// Apply the transformation. |
| 143 |
|
|
|
| 144 |
|
|
for (i = k+1; i < m; i++) { |
| 145 |
|
|
work[i] = 0.0; |
| 146 |
|
|
} |
| 147 |
|
|
for (j = k+1; j < n; j++) { |
| 148 |
|
|
for (i = k+1; i < m; i++) { |
| 149 |
|
|
work[i] += e[j]*A[i][j]; |
| 150 |
|
|
} |
| 151 |
|
|
} |
| 152 |
|
|
for (j = k+1; j < n; j++) { |
| 153 |
|
|
Real t(-e[j]/e[k+1]); |
| 154 |
|
|
for (i = k+1; i < m; i++) { |
| 155 |
|
|
A[i][j] += t*work[i]; |
| 156 |
|
|
} |
| 157 |
|
|
} |
| 158 |
|
|
} |
| 159 |
|
|
if (wantv) { |
| 160 |
|
|
|
| 161 |
|
|
// Place the transformation in V for subsequent |
| 162 |
|
|
// back multiplication. |
| 163 |
|
|
|
| 164 |
|
|
for (i = k+1; i < n; i++) { |
| 165 |
|
|
V[i][k] = e[i]; |
| 166 |
|
|
} |
| 167 |
|
|
} |
| 168 |
|
|
} |
| 169 |
|
|
} |
| 170 |
|
|
|
| 171 |
|
|
// Set up the final bidiagonal matrix or order p. |
| 172 |
|
|
|
| 173 |
|
|
int p = min(n,m+1); |
| 174 |
|
|
if (nct < n) { |
| 175 |
|
|
s[nct] = A[nct][nct]; |
| 176 |
|
|
} |
| 177 |
|
|
if (m < p) { |
| 178 |
|
|
s[p-1] = 0.0; |
| 179 |
|
|
} |
| 180 |
|
|
if (nrt+1 < p) { |
| 181 |
|
|
e[nrt] = A[nrt][p-1]; |
| 182 |
|
|
} |
| 183 |
|
|
e[p-1] = 0.0; |
| 184 |
|
|
|
| 185 |
|
|
// If required, generate U. |
| 186 |
|
|
|
| 187 |
|
|
if (wantu) { |
| 188 |
|
|
for (j = nct; j < nu; j++) { |
| 189 |
|
|
for (i = 0; i < m; i++) { |
| 190 |
|
|
U[i][j] = 0.0; |
| 191 |
|
|
} |
| 192 |
|
|
U[j][j] = 1.0; |
| 193 |
|
|
} |
| 194 |
|
|
for (k = nct-1; k >= 0; k--) { |
| 195 |
|
|
if (s[k] != 0.0) { |
| 196 |
|
|
for (j = k+1; j < nu; j++) { |
| 197 |
|
|
Real t(0.0); |
| 198 |
|
|
for (i = k; i < m; i++) { |
| 199 |
|
|
t += U[i][k]*U[i][j]; |
| 200 |
|
|
} |
| 201 |
|
|
t = -t/U[k][k]; |
| 202 |
|
|
for (i = k; i < m; i++) { |
| 203 |
|
|
U[i][j] += t*U[i][k]; |
| 204 |
|
|
} |
| 205 |
|
|
} |
| 206 |
|
|
for (i = k; i < m; i++ ) { |
| 207 |
|
|
U[i][k] = -U[i][k]; |
| 208 |
|
|
} |
| 209 |
|
|
U[k][k] = 1.0 + U[k][k]; |
| 210 |
|
|
for (i = 0; i < k-1; i++) { |
| 211 |
|
|
U[i][k] = 0.0; |
| 212 |
|
|
} |
| 213 |
|
|
} else { |
| 214 |
|
|
for (i = 0; i < m; i++) { |
| 215 |
|
|
U[i][k] = 0.0; |
| 216 |
|
|
} |
| 217 |
|
|
U[k][k] = 1.0; |
| 218 |
|
|
} |
| 219 |
|
|
} |
| 220 |
|
|
} |
| 221 |
|
|
|
| 222 |
|
|
// If required, generate V. |
| 223 |
|
|
|
| 224 |
|
|
if (wantv) { |
| 225 |
|
|
for (k = n-1; k >= 0; k--) { |
| 226 |
|
|
if ((k < nrt) & (e[k] != 0.0)) { |
| 227 |
|
|
for (j = k+1; j < nu; j++) { |
| 228 |
|
|
Real t(0.0); |
| 229 |
|
|
for (i = k+1; i < n; i++) { |
| 230 |
|
|
t += V[i][k]*V[i][j]; |
| 231 |
|
|
} |
| 232 |
|
|
t = -t/V[k+1][k]; |
| 233 |
|
|
for (i = k+1; i < n; i++) { |
| 234 |
|
|
V[i][j] += t*V[i][k]; |
| 235 |
|
|
} |
| 236 |
|
|
} |
| 237 |
|
|
} |
| 238 |
|
|
for (i = 0; i < n; i++) { |
| 239 |
|
|
V[i][k] = 0.0; |
| 240 |
|
|
} |
| 241 |
|
|
V[k][k] = 1.0; |
| 242 |
|
|
} |
| 243 |
|
|
} |
| 244 |
|
|
|
| 245 |
|
|
// Main iteration loop for the singular values. |
| 246 |
|
|
|
| 247 |
|
|
int pp = p-1; |
| 248 |
|
|
int iter = 0; |
| 249 |
|
|
Real eps(pow(2.0,-52.0)); |
| 250 |
|
|
while (p > 0) { |
| 251 |
|
|
int k=0; |
| 252 |
|
|
int kase=0; |
| 253 |
|
|
|
| 254 |
|
|
// Here is where a test for too many iterations would go. |
| 255 |
|
|
|
| 256 |
|
|
// This section of the program inspects for |
| 257 |
|
|
// negligible elements in the s and e arrays. On |
| 258 |
|
|
// completion the variables kase and k are set as follows. |
| 259 |
|
|
|
| 260 |
|
|
// kase = 1 if s(p) and e[k-1] are negligible and k<p |
| 261 |
|
|
// kase = 2 if s(k) is negligible and k<p |
| 262 |
|
|
// kase = 3 if e[k-1] is negligible, k<p, and |
| 263 |
|
|
// s(k), ..., s(p) are not negligible (qr step). |
| 264 |
|
|
// kase = 4 if e(p-1) is negligible (convergence). |
| 265 |
|
|
|
| 266 |
|
|
for (k = p-2; k >= -1; k--) { |
| 267 |
|
|
if (k == -1) { |
| 268 |
|
|
break; |
| 269 |
|
|
} |
| 270 |
|
|
if (abs(e[k]) <= eps*(abs(s[k]) + abs(s[k+1]))) { |
| 271 |
|
|
e[k] = 0.0; |
| 272 |
|
|
break; |
| 273 |
|
|
} |
| 274 |
|
|
} |
| 275 |
|
|
if (k == p-2) { |
| 276 |
|
|
kase = 4; |
| 277 |
|
|
} else { |
| 278 |
|
|
int ks; |
| 279 |
|
|
for (ks = p-1; ks >= k; ks--) { |
| 280 |
|
|
if (ks == k) { |
| 281 |
|
|
break; |
| 282 |
|
|
} |
| 283 |
|
|
Real t( (ks != p ? abs(e[ks]) : 0.) + |
| 284 |
|
|
(ks != k+1 ? abs(e[ks-1]) : 0.)); |
| 285 |
|
|
if (abs(s[ks]) <= eps*t) { |
| 286 |
|
|
s[ks] = 0.0; |
| 287 |
|
|
break; |
| 288 |
|
|
} |
| 289 |
|
|
} |
| 290 |
|
|
if (ks == k) { |
| 291 |
|
|
kase = 3; |
| 292 |
|
|
} else if (ks == p-1) { |
| 293 |
|
|
kase = 1; |
| 294 |
|
|
} else { |
| 295 |
|
|
kase = 2; |
| 296 |
|
|
k = ks; |
| 297 |
|
|
} |
| 298 |
|
|
} |
| 299 |
|
|
k++; |
| 300 |
|
|
|
| 301 |
|
|
// Perform the task indicated by kase. |
| 302 |
|
|
|
| 303 |
|
|
switch (kase) { |
| 304 |
|
|
|
| 305 |
|
|
// Deflate negligible s(p). |
| 306 |
|
|
|
| 307 |
|
|
case 1: { |
| 308 |
|
|
Real f(e[p-2]); |
| 309 |
|
|
e[p-2] = 0.0; |
| 310 |
|
|
for (j = p-2; j >= k; j--) { |
| 311 |
|
|
Real t( hypot(s[j],f)); |
| 312 |
|
|
Real cs(s[j]/t); |
| 313 |
|
|
Real sn(f/t); |
| 314 |
|
|
s[j] = t; |
| 315 |
|
|
if (j != k) { |
| 316 |
|
|
f = -sn*e[j-1]; |
| 317 |
|
|
e[j-1] = cs*e[j-1]; |
| 318 |
|
|
} |
| 319 |
|
|
if (wantv) { |
| 320 |
|
|
for (i = 0; i < n; i++) { |
| 321 |
|
|
t = cs*V[i][j] + sn*V[i][p-1]; |
| 322 |
|
|
V[i][p-1] = -sn*V[i][j] + cs*V[i][p-1]; |
| 323 |
|
|
V[i][j] = t; |
| 324 |
|
|
} |
| 325 |
|
|
} |
| 326 |
|
|
} |
| 327 |
|
|
} |
| 328 |
|
|
break; |
| 329 |
|
|
|
| 330 |
|
|
// Split at negligible s(k). |
| 331 |
|
|
|
| 332 |
|
|
case 2: { |
| 333 |
|
|
Real f(e[k-1]); |
| 334 |
|
|
e[k-1] = 0.0; |
| 335 |
|
|
for (j = k; j < p; j++) { |
| 336 |
|
|
Real t(hypot(s[j],f)); |
| 337 |
|
|
Real cs( s[j]/t); |
| 338 |
|
|
Real sn(f/t); |
| 339 |
|
|
s[j] = t; |
| 340 |
|
|
f = -sn*e[j]; |
| 341 |
|
|
e[j] = cs*e[j]; |
| 342 |
|
|
if (wantu) { |
| 343 |
|
|
for (i = 0; i < m; i++) { |
| 344 |
|
|
t = cs*U[i][j] + sn*U[i][k-1]; |
| 345 |
|
|
U[i][k-1] = -sn*U[i][j] + cs*U[i][k-1]; |
| 346 |
|
|
U[i][j] = t; |
| 347 |
|
|
} |
| 348 |
|
|
} |
| 349 |
|
|
} |
| 350 |
|
|
} |
| 351 |
|
|
break; |
| 352 |
|
|
|
| 353 |
|
|
// Perform one qr step. |
| 354 |
|
|
|
| 355 |
|
|
case 3: { |
| 356 |
|
|
|
| 357 |
|
|
// Calculate the shift. |
| 358 |
|
|
|
| 359 |
|
|
Real scale = max(max(max(max( |
| 360 |
|
|
abs(s[p-1]),abs(s[p-2])),abs(e[p-2])), |
| 361 |
|
|
abs(s[k])),abs(e[k])); |
| 362 |
|
|
Real sp = s[p-1]/scale; |
| 363 |
|
|
Real spm1 = s[p-2]/scale; |
| 364 |
|
|
Real epm1 = e[p-2]/scale; |
| 365 |
|
|
Real sk = s[k]/scale; |
| 366 |
|
|
Real ek = e[k]/scale; |
| 367 |
|
|
Real b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0; |
| 368 |
|
|
Real c = (sp*epm1)*(sp*epm1); |
| 369 |
|
|
Real shift = 0.0; |
| 370 |
|
|
if ((b != 0.0) || (c != 0.0)) { |
| 371 |
|
|
shift = sqrt(b*b + c); |
| 372 |
|
|
if (b < 0.0) { |
| 373 |
|
|
shift = -shift; |
| 374 |
|
|
} |
| 375 |
|
|
shift = c/(b + shift); |
| 376 |
|
|
} |
| 377 |
|
|
Real f = (sk + sp)*(sk - sp) + shift; |
| 378 |
|
|
Real g = sk*ek; |
| 379 |
|
|
|
| 380 |
|
|
// Chase zeros. |
| 381 |
|
|
|
| 382 |
|
|
for (j = k; j < p-1; j++) { |
| 383 |
|
|
Real t = hypot(f,g); |
| 384 |
|
|
Real cs = f/t; |
| 385 |
|
|
Real sn = g/t; |
| 386 |
|
|
if (j != k) { |
| 387 |
|
|
e[j-1] = t; |
| 388 |
|
|
} |
| 389 |
|
|
f = cs*s[j] + sn*e[j]; |
| 390 |
|
|
e[j] = cs*e[j] - sn*s[j]; |
| 391 |
|
|
g = sn*s[j+1]; |
| 392 |
|
|
s[j+1] = cs*s[j+1]; |
| 393 |
|
|
if (wantv) { |
| 394 |
|
|
for (i = 0; i < n; i++) { |
| 395 |
|
|
t = cs*V[i][j] + sn*V[i][j+1]; |
| 396 |
|
|
V[i][j+1] = -sn*V[i][j] + cs*V[i][j+1]; |
| 397 |
|
|
V[i][j] = t; |
| 398 |
|
|
} |
| 399 |
|
|
} |
| 400 |
|
|
t = hypot(f,g); |
| 401 |
|
|
cs = f/t; |
| 402 |
|
|
sn = g/t; |
| 403 |
|
|
s[j] = t; |
| 404 |
|
|
f = cs*e[j] + sn*s[j+1]; |
| 405 |
|
|
s[j+1] = -sn*e[j] + cs*s[j+1]; |
| 406 |
|
|
g = sn*e[j+1]; |
| 407 |
|
|
e[j+1] = cs*e[j+1]; |
| 408 |
|
|
if (wantu && (j < m-1)) { |
| 409 |
|
|
for (i = 0; i < m; i++) { |
| 410 |
|
|
t = cs*U[i][j] + sn*U[i][j+1]; |
| 411 |
|
|
U[i][j+1] = -sn*U[i][j] + cs*U[i][j+1]; |
| 412 |
|
|
U[i][j] = t; |
| 413 |
|
|
} |
| 414 |
|
|
} |
| 415 |
|
|
} |
| 416 |
|
|
e[p-2] = f; |
| 417 |
|
|
iter = iter + 1; |
| 418 |
|
|
} |
| 419 |
|
|
break; |
| 420 |
|
|
|
| 421 |
|
|
// Convergence. |
| 422 |
|
|
|
| 423 |
|
|
case 4: { |
| 424 |
|
|
|
| 425 |
|
|
// Make the singular values positive. |
| 426 |
|
|
|
| 427 |
|
|
if (s[k] <= 0.0) { |
| 428 |
|
|
s[k] = (s[k] < 0.0 ? -s[k] : 0.0); |
| 429 |
|
|
if (wantv) { |
| 430 |
|
|
for (i = 0; i <= pp; i++) { |
| 431 |
|
|
V[i][k] = -V[i][k]; |
| 432 |
|
|
} |
| 433 |
|
|
} |
| 434 |
|
|
} |
| 435 |
|
|
|
| 436 |
|
|
// Order the singular values. |
| 437 |
|
|
|
| 438 |
|
|
while (k < pp) { |
| 439 |
|
|
if (s[k] >= s[k+1]) { |
| 440 |
|
|
break; |
| 441 |
|
|
} |
| 442 |
|
|
Real t = s[k]; |
| 443 |
|
|
s[k] = s[k+1]; |
| 444 |
|
|
s[k+1] = t; |
| 445 |
|
|
if (wantv && (k < n-1)) { |
| 446 |
|
|
for (i = 0; i < n; i++) { |
| 447 |
|
|
t = V[i][k+1]; V[i][k+1] = V[i][k]; V[i][k] = t; |
| 448 |
|
|
} |
| 449 |
|
|
} |
| 450 |
|
|
if (wantu && (k < m-1)) { |
| 451 |
|
|
for (i = 0; i < m; i++) { |
| 452 |
|
|
t = U[i][k+1]; U[i][k+1] = U[i][k]; U[i][k] = t; |
| 453 |
|
|
} |
| 454 |
|
|
} |
| 455 |
|
|
k++; |
| 456 |
|
|
} |
| 457 |
|
|
iter = 0; |
| 458 |
|
|
p--; |
| 459 |
|
|
} |
| 460 |
|
|
break; |
| 461 |
|
|
} |
| 462 |
|
|
} |
| 463 |
|
|
} |
| 464 |
|
|
|
| 465 |
|
|
|
| 466 |
|
|
void getU (Array2D<Real> &A) |
| 467 |
|
|
{ |
| 468 |
|
|
int minm = min(m+1,n); |
| 469 |
|
|
|
| 470 |
|
|
A = Array2D<Real>(m, minm); |
| 471 |
|
|
|
| 472 |
|
|
for (int i=0; i<m; i++) |
| 473 |
|
|
for (int j=0; j<minm; j++) |
| 474 |
|
|
A[i][j] = U[i][j]; |
| 475 |
|
|
|
| 476 |
|
|
} |
| 477 |
|
|
|
| 478 |
|
|
/* Return the right singular vectors */ |
| 479 |
|
|
|
| 480 |
|
|
void getV (Array2D<Real> &A) |
| 481 |
|
|
{ |
| 482 |
|
|
A = V; |
| 483 |
|
|
} |
| 484 |
|
|
|
| 485 |
|
|
/** Return the one-dimensional array of singular values */ |
| 486 |
|
|
|
| 487 |
|
|
void getSingularValues (Array1D<Real> &x) |
| 488 |
|
|
{ |
| 489 |
|
|
x = s; |
| 490 |
|
|
} |
| 491 |
|
|
|
| 492 |
|
|
/** Return the diagonal matrix of singular values |
| 493 |
|
|
@return S |
| 494 |
|
|
*/ |
| 495 |
|
|
|
| 496 |
|
|
void getS (Array2D<Real> &A) { |
| 497 |
|
|
A = Array2D<Real>(n,n); |
| 498 |
|
|
for (int i = 0; i < n; i++) { |
| 499 |
|
|
for (int j = 0; j < n; j++) { |
| 500 |
|
|
A[i][j] = 0.0; |
| 501 |
|
|
} |
| 502 |
|
|
A[i][i] = s[i]; |
| 503 |
|
|
} |
| 504 |
|
|
} |
| 505 |
|
|
|
| 506 |
|
|
/** Two norm (max(S)) */ |
| 507 |
|
|
|
| 508 |
|
|
Real norm2 () { |
| 509 |
|
|
return s[0]; |
| 510 |
|
|
} |
| 511 |
|
|
|
| 512 |
|
|
/** Two norm of condition number (max(S)/min(S)) */ |
| 513 |
|
|
|
| 514 |
|
|
Real cond () { |
| 515 |
|
|
return s[0]/s[min(m,n)-1]; |
| 516 |
|
|
} |
| 517 |
|
|
|
| 518 |
|
|
/** Effective numerical matrix rank |
| 519 |
|
|
@return Number of nonnegligible singular values. |
| 520 |
|
|
*/ |
| 521 |
|
|
|
| 522 |
|
|
int rank () |
| 523 |
|
|
{ |
| 524 |
|
|
Real eps = pow(2.0,-52.0); |
| 525 |
|
|
Real tol = max(m,n)*s[0]*eps; |
| 526 |
|
|
int r = 0; |
| 527 |
|
|
for (int i = 0; i < s.dim(); i++) { |
| 528 |
|
|
if (s[i] > tol) { |
| 529 |
|
|
r++; |
| 530 |
|
|
} |
| 531 |
|
|
} |
| 532 |
|
|
return r; |
| 533 |
|
|
} |
| 534 |
|
|
}; |
| 535 |
|
|
|
| 536 |
|
|
} |
| 537 |
|
|
#endif |
| 538 |
|
|
// JAMA_SVD_H |