| 1 |
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
| 2 |
|
| 3 |
/* |
| 4 |
Copyright (C) 2003 Neil Firth |
| 5 |
|
| 6 |
This file is part of QuantLib, a free-software/open-source library |
| 7 |
for financial quantitative analysts and developers - http://quantlib.org/ |
| 8 |
|
| 9 |
QuantLib is free software: you can redistribute it and/or modify it |
| 10 |
under the terms of the QuantLib license. You should have received a |
| 11 |
copy of the license along with this program; if not, please email |
| 12 |
<quantlib-dev@lists.sf.net>. The license is also available online at |
| 13 |
<http://quantlib.org/license.shtml>. |
| 14 |
|
| 15 |
This program is distributed in the hope that it will be useful, but WITHOUT |
| 16 |
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| 17 |
FOR A PARTICULAR PURPOSE. See the license for more details. |
| 18 |
|
| 19 |
Adapted from the TNT project |
| 20 |
http://math.nist.gov/tnt/download.html |
| 21 |
|
| 22 |
This software was developed at the National Institute of Standards |
| 23 |
and Technology (NIST) by employees of the Federal Government in the |
| 24 |
course of their official duties. Pursuant to title 17 Section 105 |
| 25 |
of the United States Code this software is not subject to copyright |
| 26 |
protection and is in the public domain. NIST assumes no responsibility |
| 27 |
whatsoever for its use by other parties, and makes no guarantees, |
| 28 |
expressed or implied, about its quality, reliability, or any other |
| 29 |
characteristic. |
| 30 |
|
| 31 |
We would appreciate acknowledgement if the software is incorporated in |
| 32 |
redistributable libraries or applications. |
| 33 |
*/ |
| 34 |
|
| 35 |
|
| 36 |
#include "math/svd.hpp" |
| 37 |
|
| 38 |
namespace oopse { |
| 39 |
|
| 40 |
namespace { |
| 41 |
|
| 42 |
/* returns hypotenuse of real (non-complex) scalars a and b by |
| 43 |
avoiding underflow/overflow |
| 44 |
using (a * sqrt( 1 + (b/a) * (b/a))), rather than |
| 45 |
sqrt(a*a + b*b). |
| 46 |
*/ |
| 47 |
Real hypot(const Real &a, const Real &b) { |
| 48 |
if (a == 0) { |
| 49 |
return std::fabs(b); |
| 50 |
} else { |
| 51 |
Real c = b/a; |
| 52 |
return std::fabs(a) * std::sqrt(1 + c*c); |
| 53 |
} |
| 54 |
} |
| 55 |
|
| 56 |
} |
| 57 |
|
| 58 |
|
| 59 |
SVD::SVD(const RectMatrix& M) { |
| 60 |
|
| 61 |
using std::swap; |
| 62 |
|
| 63 |
RectMatrix A; |
| 64 |
|
| 65 |
/* The implementation requires that rows > columns. |
| 66 |
If this is not the case, we decompose M^T instead. |
| 67 |
Swapping the resulting U and V gives the desired |
| 68 |
result for M as |
| 69 |
|
| 70 |
M^T = U S V^T (decomposition of M^T) |
| 71 |
|
| 72 |
M = (U S V^T)^T (transpose) |
| 73 |
|
| 74 |
M = (V^T^T S^T U^T) ((AB)^T = B^T A^T) |
| 75 |
|
| 76 |
M = V S U^T (idempotence of transposition, |
| 77 |
symmetry of diagonal matrix S) |
| 78 |
|
| 79 |
*/ |
| 80 |
|
| 81 |
if (M.rows() >= M.columns()) { |
| 82 |
A = M; |
| 83 |
transpose_ = false; |
| 84 |
} else { |
| 85 |
A = transpose(M); |
| 86 |
transpose_ = true; |
| 87 |
} |
| 88 |
|
| 89 |
m_ = A.rows(); |
| 90 |
n_ = A.columns(); |
| 91 |
|
| 92 |
// we're sure that m_ >= n_ |
| 93 |
|
| 94 |
s_ = Vector(n_); |
| 95 |
U_ = RectMatrix(m_,n_, 0.0); |
| 96 |
V_ = RectMatrix(n_,n_); |
| 97 |
Vector e(n_); |
| 98 |
Vector work(m_); |
| 99 |
int i, j, k; |
| 100 |
|
| 101 |
// Reduce A to bidiagonal form, storing the diagonal elements |
| 102 |
// in s and the super-diagonal elements in e. |
| 103 |
|
| 104 |
int nct = std::min(m_-1,n_); |
| 105 |
int nrt = std::max(0,n_-2); |
| 106 |
for (k = 0; k < std::max(nct,nrt); k++) { |
| 107 |
if (k < nct) { |
| 108 |
|
| 109 |
// Compute the transformation for the k-th column and |
| 110 |
// place the k-th diagonal in s[k]. |
| 111 |
// Compute 2-norm of k-th column without under/overflow. |
| 112 |
s_[k] = 0; |
| 113 |
for (i = k; i < m_; i++) { |
| 114 |
s_[k] = hypot(s_[k],A[i][k]); |
| 115 |
} |
| 116 |
if (s_[k] != 0.0) { |
| 117 |
if (A[k][k] < 0.0) { |
| 118 |
s_[k] = -s_[k]; |
| 119 |
} |
| 120 |
for (i = k; i < m_; i++) { |
| 121 |
A[i][k] /= s_[k]; |
| 122 |
} |
| 123 |
A[k][k] += 1.0; |
| 124 |
} |
| 125 |
s_[k] = -s_[k]; |
| 126 |
} |
| 127 |
for (j = k+1; j < n_; j++) { |
| 128 |
if ((k < nct) && (s_[k] != 0.0)) { |
| 129 |
|
| 130 |
// Apply the transformation. |
| 131 |
|
| 132 |
Real t = 0; |
| 133 |
for (i = k; i < m_; i++) { |
| 134 |
t += A[i][k]*A[i][j]; |
| 135 |
} |
| 136 |
t = -t/A[k][k]; |
| 137 |
for (i = k; i < m_; i++) { |
| 138 |
A[i][j] += t*A[i][k]; |
| 139 |
} |
| 140 |
} |
| 141 |
|
| 142 |
// Place the k-th row of A into e for the |
| 143 |
// subsequent calculation of the row transformation. |
| 144 |
|
| 145 |
e[j] = A[k][j]; |
| 146 |
} |
| 147 |
if (k < nct) { |
| 148 |
|
| 149 |
// Place the transformation in U for subsequent back |
| 150 |
// multiplication. |
| 151 |
|
| 152 |
for (i = k; i < m_; i++) { |
| 153 |
U_[i][k] = A[i][k]; |
| 154 |
} |
| 155 |
} |
| 156 |
if (k < nrt) { |
| 157 |
|
| 158 |
// Compute the k-th row transformation and place the |
| 159 |
// k-th super-diagonal in e[k]. |
| 160 |
// Compute 2-norm without under/overflow. |
| 161 |
e[k] = 0; |
| 162 |
for (i = k+1; i < n_; i++) { |
| 163 |
e[k] = hypot(e[k],e[i]); |
| 164 |
} |
| 165 |
if (e[k] != 0.0) { |
| 166 |
if (e[k+1] < 0.0) { |
| 167 |
e[k] = -e[k]; |
| 168 |
} |
| 169 |
for (i = k+1; i < n_; i++) { |
| 170 |
e[i] /= e[k]; |
| 171 |
} |
| 172 |
e[k+1] += 1.0; |
| 173 |
} |
| 174 |
e[k] = -e[k]; |
| 175 |
if ((k+1 < m_) & (e[k] != 0.0)) { |
| 176 |
|
| 177 |
// Apply the transformation. |
| 178 |
|
| 179 |
for (i = k+1; i < m_; i++) { |
| 180 |
work[i] = 0.0; |
| 181 |
} |
| 182 |
for (j = k+1; j < n_; j++) { |
| 183 |
for (i = k+1; i < m_; i++) { |
| 184 |
work[i] += e[j]*A[i][j]; |
| 185 |
} |
| 186 |
} |
| 187 |
for (j = k+1; j < n_; j++) { |
| 188 |
Real t = -e[j]/e[k+1]; |
| 189 |
for (i = k+1; i < m_; i++) { |
| 190 |
A[i][j] += t*work[i]; |
| 191 |
} |
| 192 |
} |
| 193 |
} |
| 194 |
|
| 195 |
// Place the transformation in V for subsequent |
| 196 |
// back multiplication. |
| 197 |
|
| 198 |
for (i = k+1; i < n_; i++) { |
| 199 |
V_[i][k] = e[i]; |
| 200 |
} |
| 201 |
} |
| 202 |
} |
| 203 |
|
| 204 |
// Set up the final bidiagonal matrix or order n. |
| 205 |
|
| 206 |
if (nct < n_) { |
| 207 |
s_[nct] = A[nct][nct]; |
| 208 |
} |
| 209 |
if (nrt+1 < n_) { |
| 210 |
e[nrt] = A[nrt][n_-1]; |
| 211 |
} |
| 212 |
e[n_-1] = 0.0; |
| 213 |
|
| 214 |
// generate U |
| 215 |
|
| 216 |
for (j = nct; j < n_; j++) { |
| 217 |
for (i = 0; i < m_; i++) { |
| 218 |
U_[i][j] = 0.0; |
| 219 |
} |
| 220 |
U_[j][j] = 1.0; |
| 221 |
} |
| 222 |
for (k = nct-1; k >= 0; --k) { |
| 223 |
if (s_[k] != 0.0) { |
| 224 |
for (j = k+1; j < n_; ++j) { |
| 225 |
Real t = 0; |
| 226 |
for (i = k; i < m_; i++) { |
| 227 |
t += U_[i][k]*U_[i][j]; |
| 228 |
} |
| 229 |
t = -t/U_[k][k]; |
| 230 |
for (i = k; i < m_; i++) { |
| 231 |
U_[i][j] += t*U_[i][k]; |
| 232 |
} |
| 233 |
} |
| 234 |
for (i = k; i < m_; i++ ) { |
| 235 |
U_[i][k] = -U_[i][k]; |
| 236 |
} |
| 237 |
U_[k][k] = 1.0 + U_[k][k]; |
| 238 |
for (i = 0; i < k-1; i++) { |
| 239 |
U_[i][k] = 0.0; |
| 240 |
} |
| 241 |
} else { |
| 242 |
for (i = 0; i < m_; i++) { |
| 243 |
U_[i][k] = 0.0; |
| 244 |
} |
| 245 |
U_[k][k] = 1.0; |
| 246 |
} |
| 247 |
} |
| 248 |
|
| 249 |
// generate V |
| 250 |
|
| 251 |
for (k = n_-1; k >= 0; --k) { |
| 252 |
if ((k < nrt) & (e[k] != 0.0)) { |
| 253 |
for (j = k+1; j < n_; ++j) { |
| 254 |
Real t = 0; |
| 255 |
for (i = k+1; i < n_; i++) { |
| 256 |
t += V_[i][k]*V_[i][j]; |
| 257 |
} |
| 258 |
t = -t/V_[k+1][k]; |
| 259 |
for (i = k+1; i < n_; i++) { |
| 260 |
V_[i][j] += t*V_[i][k]; |
| 261 |
} |
| 262 |
} |
| 263 |
} |
| 264 |
for (i = 0; i < n_; i++) { |
| 265 |
V_[i][k] = 0.0; |
| 266 |
} |
| 267 |
V_[k][k] = 1.0; |
| 268 |
} |
| 269 |
|
| 270 |
// Main iteration loop for the singular values. |
| 271 |
|
| 272 |
Integer p = n_, pp = p-1; |
| 273 |
Integer iter = 0; |
| 274 |
Real eps = std::pow(2.0,-52.0); |
| 275 |
while (p > 0) { |
| 276 |
Integer k; |
| 277 |
Integer kase; |
| 278 |
|
| 279 |
// Here is where a test for too many iterations would go. |
| 280 |
|
| 281 |
// This section of the program inspects for |
| 282 |
// negligible elements in the s and e arrays. On |
| 283 |
// completion the variables kase and k are set as follows. |
| 284 |
|
| 285 |
// kase = 1 if s(p) and e[k-1] are negligible and k<p |
| 286 |
// kase = 2 if s(k) is negligible and k<p |
| 287 |
// kase = 3 if e[k-1] is negligible, k<p, and |
| 288 |
// s(k), ..., s(p) are not negligible (qr step). |
| 289 |
// kase = 4 if e(p-1) is negligible (convergence). |
| 290 |
|
| 291 |
for (k = p-2; k >= -1; --k) { |
| 292 |
if (k == -1) { |
| 293 |
break; |
| 294 |
} |
| 295 |
if (std::fabs(e[k]) <= eps*(std::fabs(s_[k]) + |
| 296 |
std::fabs(s_[k+1]))) { |
| 297 |
e[k] = 0.0; |
| 298 |
break; |
| 299 |
} |
| 300 |
} |
| 301 |
if (k == p-2) { |
| 302 |
kase = 4; |
| 303 |
} else { |
| 304 |
Integer ks; |
| 305 |
for (ks = p-1; ks >= k; --ks) { |
| 306 |
if (ks == k) { |
| 307 |
break; |
| 308 |
} |
| 309 |
Real t = (ks != p ? std::fabs(e[ks]) : 0.) + |
| 310 |
(ks != k+1 ? std::fabs(e[ks-1]) : 0.); |
| 311 |
if (std::fabs(s_[ks]) <= eps*t) { |
| 312 |
s_[ks] = 0.0; |
| 313 |
break; |
| 314 |
} |
| 315 |
} |
| 316 |
if (ks == k) { |
| 317 |
kase = 3; |
| 318 |
} else if (ks == p-1) { |
| 319 |
kase = 1; |
| 320 |
} else { |
| 321 |
kase = 2; |
| 322 |
k = ks; |
| 323 |
} |
| 324 |
} |
| 325 |
k++; |
| 326 |
|
| 327 |
// Perform the task indicated by kase. |
| 328 |
|
| 329 |
switch (kase) { |
| 330 |
|
| 331 |
// Deflate negligible s(p). |
| 332 |
|
| 333 |
case 1: { |
| 334 |
Real f = e[p-2]; |
| 335 |
e[p-2] = 0.0; |
| 336 |
for (j = p-2; j >= k; --j) { |
| 337 |
Real t = hypot(s_[j],f); |
| 338 |
Real cs = s_[j]/t; |
| 339 |
Real sn = f/t; |
| 340 |
s_[j] = t; |
| 341 |
if (j != k) { |
| 342 |
f = -sn*e[j-1]; |
| 343 |
e[j-1] = cs*e[j-1]; |
| 344 |
} |
| 345 |
for (i = 0; i < n_; i++) { |
| 346 |
t = cs*V_[i][j] + sn*V_[i][p-1]; |
| 347 |
V_[i][p-1] = -sn*V_[i][j] + cs*V_[i][p-1]; |
| 348 |
V_[i][j] = t; |
| 349 |
} |
| 350 |
} |
| 351 |
} |
| 352 |
break; |
| 353 |
|
| 354 |
// Split at negligible s(k). |
| 355 |
|
| 356 |
case 2: { |
| 357 |
Real f = e[k-1]; |
| 358 |
e[k-1] = 0.0; |
| 359 |
for (j = k; j < p; j++) { |
| 360 |
Real t = hypot(s_[j],f); |
| 361 |
Real cs = s_[j]/t; |
| 362 |
Real sn = f/t; |
| 363 |
s_[j] = t; |
| 364 |
f = -sn*e[j]; |
| 365 |
e[j] = cs*e[j]; |
| 366 |
for (i = 0; i < m_; i++) { |
| 367 |
t = cs*U_[i][j] + sn*U_[i][k-1]; |
| 368 |
U_[i][k-1] = -sn*U_[i][j] + cs*U_[i][k-1]; |
| 369 |
U_[i][j] = t; |
| 370 |
} |
| 371 |
} |
| 372 |
} |
| 373 |
break; |
| 374 |
|
| 375 |
// Perform one qr step. |
| 376 |
|
| 377 |
case 3: { |
| 378 |
|
| 379 |
// Calculate the shift. |
| 380 |
Real scale = std::max( |
| 381 |
std::max( |
| 382 |
std::max( |
| 383 |
std::max(std::fabs(s_[p-1]), |
| 384 |
std::fabs(s_[p-2])), |
| 385 |
std::fabs(e[p-2])), |
| 386 |
std::fabs(s_[k])), |
| 387 |
std::fabs(e[k])); |
| 388 |
Real sp = s_[p-1]/scale; |
| 389 |
Real spm1 = s_[p-2]/scale; |
| 390 |
Real epm1 = e[p-2]/scale; |
| 391 |
Real sk = s_[k]/scale; |
| 392 |
Real ek = e[k]/scale; |
| 393 |
Real b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0; |
| 394 |
Real c = (sp*epm1)*(sp*epm1); |
| 395 |
Real shift = 0.0; |
| 396 |
if ((b != 0.0) | (c != 0.0)) { |
| 397 |
shift = std::sqrt(b*b + c); |
| 398 |
if (b < 0.0) { |
| 399 |
shift = -shift; |
| 400 |
} |
| 401 |
shift = c/(b + shift); |
| 402 |
} |
| 403 |
Real f = (sk + sp)*(sk - sp) + shift; |
| 404 |
Real g = sk*ek; |
| 405 |
|
| 406 |
// Chase zeros. |
| 407 |
|
| 408 |
for (j = k; j < p-1; j++) { |
| 409 |
Real t = hypot(f,g); |
| 410 |
Real cs = f/t; |
| 411 |
Real sn = g/t; |
| 412 |
if (j != k) { |
| 413 |
e[j-1] = t; |
| 414 |
} |
| 415 |
f = cs*s_[j] + sn*e[j]; |
| 416 |
e[j] = cs*e[j] - sn*s_[j]; |
| 417 |
g = sn*s_[j+1]; |
| 418 |
s_[j+1] = cs*s_[j+1]; |
| 419 |
for (i = 0; i < n_; i++) { |
| 420 |
t = cs*V_[i][j] + sn*V_[i][j+1]; |
| 421 |
V_[i][j+1] = -sn*V_[i][j] + cs*V_[i][j+1]; |
| 422 |
V_[i][j] = t; |
| 423 |
} |
| 424 |
t = hypot(f,g); |
| 425 |
cs = f/t; |
| 426 |
sn = g/t; |
| 427 |
s_[j] = t; |
| 428 |
f = cs*e[j] + sn*s_[j+1]; |
| 429 |
s_[j+1] = -sn*e[j] + cs*s_[j+1]; |
| 430 |
g = sn*e[j+1]; |
| 431 |
e[j+1] = cs*e[j+1]; |
| 432 |
if (j < m_-1) { |
| 433 |
for (i = 0; i < m_; i++) { |
| 434 |
t = cs*U_[i][j] + sn*U_[i][j+1]; |
| 435 |
U_[i][j+1] = -sn*U_[i][j] + cs*U_[i][j+1]; |
| 436 |
U_[i][j] = t; |
| 437 |
} |
| 438 |
} |
| 439 |
} |
| 440 |
e[p-2] = f; |
| 441 |
iter = iter + 1; |
| 442 |
} |
| 443 |
break; |
| 444 |
|
| 445 |
// Convergence. |
| 446 |
|
| 447 |
case 4: { |
| 448 |
|
| 449 |
// Make the singular values positive. |
| 450 |
|
| 451 |
if (s_[k] <= 0.0) { |
| 452 |
s_[k] = (s_[k] < 0.0 ? -s_[k] : 0.0); |
| 453 |
for (i = 0; i <= pp; i++) { |
| 454 |
V_[i][k] = -V_[i][k]; |
| 455 |
} |
| 456 |
} |
| 457 |
|
| 458 |
// Order the singular values. |
| 459 |
|
| 460 |
while (k < pp) { |
| 461 |
if (s_[k] >= s_[k+1]) { |
| 462 |
break; |
| 463 |
} |
| 464 |
swap(s_[k], s_[k+1]); |
| 465 |
if (k < n_-1) { |
| 466 |
for (i = 0; i < n_; i++) { |
| 467 |
swap(V_[i][k], V_[i][k+1]); |
| 468 |
} |
| 469 |
} |
| 470 |
if (k < m_-1) { |
| 471 |
for (i = 0; i < m_; i++) { |
| 472 |
swap(U_[i][k], U_[i][k+1]); |
| 473 |
} |
| 474 |
} |
| 475 |
k++; |
| 476 |
} |
| 477 |
iter = 0; |
| 478 |
--p; |
| 479 |
} |
| 480 |
break; |
| 481 |
} |
| 482 |
} |
| 483 |
} |
| 484 |
|
| 485 |
const RectMatrix& SVD::U() const { |
| 486 |
return (transpose_ ? V_ : U_); |
| 487 |
} |
| 488 |
|
| 489 |
const RectMatrix& SVD::V() const { |
| 490 |
return (transpose_ ? U_ : V_); |
| 491 |
} |
| 492 |
|
| 493 |
const Vector& SVD::singularValues() const { |
| 494 |
return s_; |
| 495 |
} |
| 496 |
|
| 497 |
RectMatrix SVD::S() const { |
| 498 |
Matrix S(n_,n_); |
| 499 |
for (Size i = 0; i < Size(n_); i++) { |
| 500 |
for (Size j = 0; j < Size(n_); j++) { |
| 501 |
S[i][j] = 0.0; |
| 502 |
} |
| 503 |
S[i][i] = s_[i]; |
| 504 |
} |
| 505 |
return S; |
| 506 |
} |
| 507 |
|
| 508 |
Real SVD::norm2() { |
| 509 |
return s_[0]; |
| 510 |
} |
| 511 |
|
| 512 |
Real SVD::cond() { |
| 513 |
return s_[0]/s_[n_-1]; |
| 514 |
} |
| 515 |
|
| 516 |
integer SVD::rank() { |
| 517 |
Real eps = std::pow(2.0,-52.0); |
| 518 |
Real tol = m_*s_[0]*eps; |
| 519 |
Integer r = 0; |
| 520 |
for (Size i = 0; i < s_.size(); i++) { |
| 521 |
if (s_[i] > tol) { |
| 522 |
r++; |
| 523 |
} |
| 524 |
} |
| 525 |
return r; |
| 526 |
} |
| 527 |
|
| 528 |
Vector SVD::solveFor(const Array& b) const{ |
| 529 |
RectMatrix W(n_, n_, 0.0); |
| 530 |
for (Size i=0; i<Size(n_); i++) |
| 531 |
W[i][i] = 1./s_[i]; |
| 532 |
|
| 533 |
RectMatrix inverse = V()* W * transpose(U()); |
| 534 |
Vector result = inverse * b; |
| 535 |
return result; |
| 536 |
} |
| 537 |
|
| 538 |
} |
| 539 |
|