| 1 | tim | 741 | /********************************************************************** | 
| 2 |  |  | matrix.cpp - Operations on arbitrary-sized matrix. | 
| 3 |  |  |  | 
| 4 |  |  | Copyright (C) 1998-2001 by OpenEye Scientific Software, Inc. | 
| 5 |  |  | Some portions Copyright (C) 2001-2005 by Geoffrey R. Hutchison | 
| 6 |  |  |  | 
| 7 |  |  | This file is part of the Open Babel project. | 
| 8 |  |  | For more information, see <http://openbabel.sourceforge.net/> | 
| 9 |  |  |  | 
| 10 |  |  | This program is free software; you can redistribute it and/or modify | 
| 11 |  |  | it under the terms of the GNU General Public License as published by | 
| 12 |  |  | the Free Software Foundation version 2 of the License. | 
| 13 |  |  |  | 
| 14 |  |  | This program is distributed in the hope that it will be useful, | 
| 15 |  |  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 16 |  |  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
| 17 |  |  | GNU General Public License for more details. | 
| 18 |  |  | ***********************************************************************/ | 
| 19 |  |  |  | 
| 20 |  |  | #include "matrix.hpp" | 
| 21 |  |  | #include "vector3.hpp" | 
| 22 |  |  |  | 
| 23 |  |  | using namespace std; | 
| 24 |  |  |  | 
| 25 |  |  | namespace OpenBabel | 
| 26 |  |  | { | 
| 27 |  |  |  | 
| 28 |  |  | void print_matrix(std::vector<std::vector<double> > &m) | 
| 29 |  |  | { | 
| 30 |  |  | unsigned int i,j; | 
| 31 |  |  |  | 
| 32 |  |  | for (i = 0; i < m.size(); i++) | 
| 33 |  |  | { | 
| 34 |  |  | for (j = 0; j < m[i].size(); j++) | 
| 35 |  |  | printf("%5.2f",m[i][j]); | 
| 36 |  |  | printf("\n"); | 
| 37 |  |  | } | 
| 38 |  |  | } | 
| 39 |  |  |  | 
| 40 |  |  | void print_matrix_f(double *m, int rows, int cols) | 
| 41 |  |  | { | 
| 42 |  |  | int i,j,idx; | 
| 43 |  |  |  | 
| 44 |  |  | for (i = 0; i < rows; i++) | 
| 45 |  |  | { | 
| 46 |  |  | idx = i * cols; | 
| 47 |  |  | for (j = 0; j < cols; j++) | 
| 48 |  |  | printf("%5.2f",m[idx+j]); | 
| 49 |  |  | printf("\n"); | 
| 50 |  |  | } | 
| 51 |  |  | } | 
| 52 |  |  |  | 
| 53 |  |  | void print_matrix_ff(double **m, int rows, int cols) | 
| 54 |  |  | { | 
| 55 |  |  | int i,j; | 
| 56 |  |  |  | 
| 57 |  |  | for (i = 0; i < rows; i++) | 
| 58 |  |  | { | 
| 59 |  |  | for (j = 0; j < cols; j++) | 
| 60 |  |  | printf("%5.2f",m[i][j]); | 
| 61 |  |  | printf("\n"); | 
| 62 |  |  | } | 
| 63 |  |  | } | 
| 64 |  |  |  | 
| 65 |  |  | bool mult_matrix(std::vector<std::vector<double> > &c, | 
| 66 |  |  | std::vector<std::vector<double> > &a, | 
| 67 |  |  | std::vector<std::vector<double> > &b) | 
| 68 |  |  | { | 
| 69 |  |  | unsigned int i,j,k; | 
| 70 |  |  |  | 
| 71 |  |  | if (a.size() != b.size()) | 
| 72 |  |  | return(false); | 
| 73 |  |  |  | 
| 74 |  |  | c.resize(a.size()); | 
| 75 |  |  |  | 
| 76 |  |  | for (i = 0; i < a.size(); i++) | 
| 77 |  |  | { | 
| 78 |  |  | c[i].resize(b[i].size()); | 
| 79 |  |  | for (j = 0; j < b[i].size(); j++) | 
| 80 |  |  | { | 
| 81 |  |  | c[i][j] = 0.0; | 
| 82 |  |  | for (k = 0; k < a[i].size(); k++) | 
| 83 |  |  | c[i][j] = c[i][j] + a[i][k] * b[k][j]; | 
| 84 |  |  | } | 
| 85 |  |  | } | 
| 86 |  |  |  | 
| 87 |  |  | return(true); | 
| 88 |  |  | } | 
| 89 |  |  |  | 
| 90 |  |  | bool mult_matrix_f(double *c, double *a, double *b, int rows, int cols) | 
| 91 |  |  | { | 
| 92 |  |  | int i,j,k,idx; | 
| 93 |  |  |  | 
| 94 |  |  | for ( i = 0 ; i < rows ; i++ ) | 
| 95 |  |  | { | 
| 96 |  |  | idx = i * cols; | 
| 97 |  |  | for ( j = 0; j < cols ; j++ ) | 
| 98 |  |  | { | 
| 99 |  |  | c[idx+j] = 0.0; | 
| 100 |  |  | for ( k = 0; k < cols ; k++ ) | 
| 101 |  |  | c[idx+j] = c[idx+j] + a[idx+k] * b[(k*cols)+j]; | 
| 102 |  |  | } | 
| 103 |  |  | } | 
| 104 |  |  |  | 
| 105 |  |  | return(true); | 
| 106 |  |  | } | 
| 107 |  |  |  | 
| 108 |  |  | bool mult_matrix_ff(double **c, double **a, double **b, int rows, int cols) | 
| 109 |  |  | { | 
| 110 |  |  | int i,j,k; | 
| 111 |  |  |  | 
| 112 |  |  | for ( i = 0 ; i < rows ; i++ ) | 
| 113 |  |  | for ( j = 0; j < cols ; j++ ) | 
| 114 |  |  | { | 
| 115 |  |  | c[i][j] = 0.0; | 
| 116 |  |  | for ( k = 0; k < cols ; k++ ) | 
| 117 |  |  | c[i][j] = c[i][j] + a[i][k] * b[k][j]; | 
| 118 |  |  | } | 
| 119 |  |  |  | 
| 120 |  |  | return(true); | 
| 121 |  |  | } | 
| 122 |  |  |  | 
| 123 |  |  | bool invert_matrix(std::vector<std::vector<double> > &mat, double &det) | 
| 124 |  |  | { | 
| 125 |  |  | int  i, j, k, m, n, row = 0, col = 0; | 
| 126 |  |  | double tempo, big, pvt; | 
| 127 |  |  |  | 
| 128 |  |  | vector<int> pvt_ind; | 
| 129 |  |  | vector<vector<int> > index; | 
| 130 |  |  |  | 
| 131 |  |  | int cols = mat[0].size(); | 
| 132 |  |  | int rows = mat.size(); | 
| 133 |  |  |  | 
| 134 |  |  | pvt_ind.resize(mat[0].size()); | 
| 135 |  |  |  | 
| 136 |  |  | index.resize(mat.size()); | 
| 137 |  |  | for (i = 0; (unsigned)i < mat.size(); i++) | 
| 138 |  |  | index[i].resize(2); | 
| 139 |  |  |  | 
| 140 |  |  | // make sure we have a square matrix | 
| 141 |  |  | // #rows == #cols; | 
| 142 |  |  | if (cols != rows) | 
| 143 |  |  | { | 
| 144 |  |  | det = 0.0; | 
| 145 |  |  | return(false); | 
| 146 |  |  | } | 
| 147 |  |  |  | 
| 148 |  |  | det = 1.0; | 
| 149 |  |  |  | 
| 150 |  |  | for (i = 0; i < cols; i++) | 
| 151 |  |  | pvt_ind[i] = rows+1; | 
| 152 |  |  |  | 
| 153 |  |  | for (i = 0; i < cols; i++) | 
| 154 |  |  | { | 
| 155 |  |  | big = 0.0; | 
| 156 |  |  | for (j = 0; j < cols; j++) | 
| 157 |  |  | { | 
| 158 |  |  | if (pvt_ind[j] != 0) | 
| 159 |  |  | for (k = 0; k < cols; k++) | 
| 160 |  |  | { | 
| 161 |  |  | if (fabs(big) < fabs(mat[j][k])) | 
| 162 |  |  | { | 
| 163 |  |  | row = j; | 
| 164 |  |  | col = k; | 
| 165 |  |  | big = mat[j][k]; | 
| 166 |  |  | } | 
| 167 |  |  | } | 
| 168 |  |  | } | 
| 169 |  |  |  | 
| 170 |  |  | pvt_ind[col]++; | 
| 171 |  |  | if (row != col) | 
| 172 |  |  | { | 
| 173 |  |  | det = -det; | 
| 174 |  |  | for (m = 0; m < cols; m++) | 
| 175 |  |  | { | 
| 176 |  |  | tempo = mat[row][m]; | 
| 177 |  |  | mat[row][m] = mat[col][m]; | 
| 178 |  |  | mat[col][m] = tempo; | 
| 179 |  |  | } | 
| 180 |  |  | } | 
| 181 |  |  |  | 
| 182 |  |  | index[i][0] = row; | 
| 183 |  |  | index[i][1] = col; | 
| 184 |  |  | pvt = mat[col][col]; | 
| 185 |  |  | det *= pvt; | 
| 186 |  |  |  | 
| 187 |  |  | mat[col][col] = 1.0; | 
| 188 |  |  |  | 
| 189 |  |  | for (m = 0; m < cols; m++) | 
| 190 |  |  | mat[col][m] /= pvt; | 
| 191 |  |  |  | 
| 192 |  |  | for (n = 0; n < cols; n++) | 
| 193 |  |  | if (n != col) | 
| 194 |  |  | { | 
| 195 |  |  | tempo = mat[n][col]; | 
| 196 |  |  | mat[n][col] = 0.0; | 
| 197 |  |  | for (m = 0; m < cols; m++) | 
| 198 |  |  | mat[n][m] -= mat[col][m] * tempo; | 
| 199 |  |  | } | 
| 200 |  |  | } | 
| 201 |  |  |  | 
| 202 |  |  | for (i = 0; i < cols; i++) | 
| 203 |  |  | { | 
| 204 |  |  | m = cols - 1; | 
| 205 |  |  | if (index[m][0] != index[m][1]) | 
| 206 |  |  | { | 
| 207 |  |  | row = index[m][0]; | 
| 208 |  |  | col = index[m][1]; | 
| 209 |  |  | for (k = 0; k < cols; k++) | 
| 210 |  |  | { | 
| 211 |  |  | tempo = mat[k][row]; | 
| 212 |  |  | mat[k][row] = mat[k][col]; | 
| 213 |  |  | mat[k][col] = tempo; | 
| 214 |  |  | } | 
| 215 |  |  | } | 
| 216 |  |  | } | 
| 217 |  |  |  | 
| 218 |  |  | return(true); | 
| 219 |  |  | } | 
| 220 |  |  |  | 
| 221 |  |  | bool invert_matrix_f(double *mat, double &det, int rows, int cols) | 
| 222 |  |  | { | 
| 223 |  |  | int  i, j, k, m, n, row = 0, col = 0, idx1, idx2; | 
| 224 |  |  | double tempo, big, pvt; | 
| 225 |  |  |  | 
| 226 |  |  | vector<int> pvt_ind; | 
| 227 |  |  | vector<vector<int> > index; | 
| 228 |  |  |  | 
| 229 |  |  | pvt_ind.resize(cols); | 
| 230 |  |  | index.resize(rows); | 
| 231 |  |  |  | 
| 232 |  |  | for (i = 0; i < rows; i++) | 
| 233 |  |  | index[i].resize(2); | 
| 234 |  |  |  | 
| 235 |  |  | // make sure we have a square matrix | 
| 236 |  |  | // #rows == #cols; | 
| 237 |  |  | if (cols != rows) | 
| 238 |  |  | { | 
| 239 |  |  | det = 0.0; | 
| 240 |  |  | return(false); | 
| 241 |  |  | } | 
| 242 |  |  |  | 
| 243 |  |  | det = 1.0; | 
| 244 |  |  |  | 
| 245 |  |  | for (i = 0; i < cols; i++) | 
| 246 |  |  | pvt_ind[i] = rows+1; | 
| 247 |  |  |  | 
| 248 |  |  | for (i = 0; i < cols; i++) | 
| 249 |  |  | { | 
| 250 |  |  | big = 0.0; | 
| 251 |  |  | for (j = 0; j < cols; j++) | 
| 252 |  |  | { | 
| 253 |  |  | if (pvt_ind[j] != 0) | 
| 254 |  |  | { | 
| 255 |  |  | idx1 = (j * cols); | 
| 256 |  |  | for (k = 0; k < cols; k++) | 
| 257 |  |  | { | 
| 258 |  |  | idx2 = idx1 + k; | 
| 259 |  |  | if (fabs(big) < fabs(mat[idx2])) | 
| 260 |  |  | { | 
| 261 |  |  | row = j; | 
| 262 |  |  | col = k; | 
| 263 |  |  | big = mat[idx2]; | 
| 264 |  |  | } | 
| 265 |  |  | } | 
| 266 |  |  | } | 
| 267 |  |  | } | 
| 268 |  |  |  | 
| 269 |  |  | pvt_ind[col]++; | 
| 270 |  |  | if (row != col) | 
| 271 |  |  | { | 
| 272 |  |  | det  = -det; | 
| 273 |  |  | idx1 = row * cols; | 
| 274 |  |  | idx2 = col * cols; | 
| 275 |  |  | for (m = 0; m < cols; m++) | 
| 276 |  |  | { | 
| 277 |  |  | tempo = mat[idx1+m]; | 
| 278 |  |  | mat[idx1+m] = mat[idx2+m]; | 
| 279 |  |  | mat[idx2+m] = tempo; | 
| 280 |  |  | } | 
| 281 |  |  | } | 
| 282 |  |  |  | 
| 283 |  |  | index[i][0] = row; | 
| 284 |  |  | index[i][1] = col; | 
| 285 |  |  |  | 
| 286 |  |  | idx1 = (col*cols); | 
| 287 |  |  | pvt  = mat[idx1+col]; | 
| 288 |  |  | det *= pvt; | 
| 289 |  |  |  | 
| 290 |  |  | mat[idx1+col] = 1.0; | 
| 291 |  |  |  | 
| 292 |  |  | for (m = 0; m < cols; m++) | 
| 293 |  |  | mat[idx1+m] /= pvt; | 
| 294 |  |  |  | 
| 295 |  |  | for (n = 0; n < cols; n++) | 
| 296 |  |  | if (n != col) | 
| 297 |  |  | { | 
| 298 |  |  | idx1  = n * cols; | 
| 299 |  |  | tempo = mat[idx1 + col]; | 
| 300 |  |  | mat[idx1 + col] = 0.0; | 
| 301 |  |  |  | 
| 302 |  |  | idx2 = col * cols; | 
| 303 |  |  | for (m = 0; m < cols; m++) | 
| 304 |  |  | mat[idx1 + m] -= mat[idx2 + m] * tempo; | 
| 305 |  |  | } | 
| 306 |  |  | } | 
| 307 |  |  |  | 
| 308 |  |  | for (i = 0; i < cols; i++) | 
| 309 |  |  | { | 
| 310 |  |  | m = cols - 1; | 
| 311 |  |  | if (index[m][0] != index[m][1]) | 
| 312 |  |  | { | 
| 313 |  |  | row = index[m][0]; | 
| 314 |  |  | col = index[m][1]; | 
| 315 |  |  | for (k = 0; k < cols; k++) | 
| 316 |  |  | { | 
| 317 |  |  | idx1  = (k * cols); | 
| 318 |  |  | idx2  = idx1 + col; | 
| 319 |  |  | idx1 += row; | 
| 320 |  |  |  | 
| 321 |  |  | tempo = mat[idx1]; | 
| 322 |  |  | mat[idx1] = mat[idx2]; | 
| 323 |  |  | mat[idx2] = tempo; | 
| 324 |  |  | } | 
| 325 |  |  | } | 
| 326 |  |  | } | 
| 327 |  |  |  | 
| 328 |  |  | return(true); | 
| 329 |  |  | } | 
| 330 |  |  |  | 
| 331 |  |  | bool invert_matrix_ff(double **mat, double &det, int rows, int cols) | 
| 332 |  |  | { | 
| 333 |  |  | int  i, j, k, m, n, row = 0, col = 0; | 
| 334 |  |  | double tempo, big, pvt; | 
| 335 |  |  |  | 
| 336 |  |  | vector<int> pvt_ind; | 
| 337 |  |  | vector<vector<int> > index; | 
| 338 |  |  |  | 
| 339 |  |  | pvt_ind.resize(cols); | 
| 340 |  |  | index.resize(rows); | 
| 341 |  |  |  | 
| 342 |  |  | for (i = 0; i < rows; i++) | 
| 343 |  |  | index[i].resize(2); | 
| 344 |  |  |  | 
| 345 |  |  | // make sure we have a square matrix | 
| 346 |  |  | // #rows == #cols; | 
| 347 |  |  | if (cols != rows) | 
| 348 |  |  | { | 
| 349 |  |  | det = 0.0; | 
| 350 |  |  | return(false); | 
| 351 |  |  | } | 
| 352 |  |  |  | 
| 353 |  |  | det = 1.0; | 
| 354 |  |  |  | 
| 355 |  |  | for (i = 0; i < cols; i++) | 
| 356 |  |  | pvt_ind[i] = rows+1; | 
| 357 |  |  |  | 
| 358 |  |  | for (i = 0; i < cols; i++) | 
| 359 |  |  | { | 
| 360 |  |  | big = 0.0; | 
| 361 |  |  | for (j = 0; j < cols; j++) | 
| 362 |  |  | { | 
| 363 |  |  | if (pvt_ind[j] != 0) | 
| 364 |  |  | for (k = 0; k < cols; k++) | 
| 365 |  |  | { | 
| 366 |  |  | if (fabs(big) < fabs(mat[j][k])) | 
| 367 |  |  | { | 
| 368 |  |  | row = j; | 
| 369 |  |  | col = k; | 
| 370 |  |  | big = mat[j][k]; | 
| 371 |  |  | } | 
| 372 |  |  | } | 
| 373 |  |  | } | 
| 374 |  |  |  | 
| 375 |  |  | pvt_ind[col]++; | 
| 376 |  |  | if (row != col) | 
| 377 |  |  | { | 
| 378 |  |  | det = -det; | 
| 379 |  |  | for (m = 0; m < cols; m++) | 
| 380 |  |  | { | 
| 381 |  |  | tempo = mat[row][m]; | 
| 382 |  |  | mat[row][m] = mat[col][m]; | 
| 383 |  |  | mat[col][m] = tempo; | 
| 384 |  |  | } | 
| 385 |  |  | } | 
| 386 |  |  |  | 
| 387 |  |  | index[i][0] = row; | 
| 388 |  |  | index[i][1] = col; | 
| 389 |  |  | pvt = mat[col][col]; | 
| 390 |  |  | det *= pvt; | 
| 391 |  |  |  | 
| 392 |  |  | mat[col][col] = 1.0; | 
| 393 |  |  |  | 
| 394 |  |  | for (m = 0; m < cols; m++) | 
| 395 |  |  | mat[col][m] /= pvt; | 
| 396 |  |  |  | 
| 397 |  |  | for (n = 0; n < cols; n++) | 
| 398 |  |  | if (n != col) | 
| 399 |  |  | { | 
| 400 |  |  | tempo = mat[n][col]; | 
| 401 |  |  | mat[n][col] = 0.0; | 
| 402 |  |  | for (m = 0; m < cols; m++) | 
| 403 |  |  | mat[n][m] -= mat[col][m] * tempo; | 
| 404 |  |  | } | 
| 405 |  |  | } | 
| 406 |  |  |  | 
| 407 |  |  | for (i = 0; i < cols; i++) | 
| 408 |  |  | { | 
| 409 |  |  | m = cols - 1; | 
| 410 |  |  | if (index[m][0] != index[m][1]) | 
| 411 |  |  | { | 
| 412 |  |  | row = index[m][0]; | 
| 413 |  |  | col = index[m][1]; | 
| 414 |  |  | for (k = 0; k < cols; k++) | 
| 415 |  |  | { | 
| 416 |  |  | tempo = mat[k][row]; | 
| 417 |  |  | mat[k][row] = mat[k][col]; | 
| 418 |  |  | mat[k][col] = tempo; | 
| 419 |  |  | } | 
| 420 |  |  | } | 
| 421 |  |  | } | 
| 422 |  |  |  | 
| 423 |  |  | return(true); | 
| 424 |  |  | } | 
| 425 |  |  |  | 
| 426 |  |  | bool convert_matrix_f(std::vector<std::vector<double> > &src, double *dst) | 
| 427 |  |  | { | 
| 428 |  |  | unsigned int i, j, idx = 0; | 
| 429 |  |  |  | 
| 430 |  |  | for ( i = 0 ; i < src.size() ; i++ ) | 
| 431 |  |  | for ( j = 0 ; j < src[i].size() ; j++ ) | 
| 432 |  |  | dst[idx++] = src[i][j]; | 
| 433 |  |  |  | 
| 434 |  |  | return true; | 
| 435 |  |  | } | 
| 436 |  |  |  | 
| 437 |  |  | bool convert_matrix_ff(std::vector<std::vector<double> > &src, double **dst) | 
| 438 |  |  | { | 
| 439 |  |  | unsigned int i, j; | 
| 440 |  |  |  | 
| 441 |  |  | for ( i = 0 ; i < src.size() ; i++ ) | 
| 442 |  |  | for ( j = 0 ; j < src[i].size() ; j++ ) | 
| 443 |  |  | dst[i][j] = src[i][j]; | 
| 444 |  |  |  | 
| 445 |  |  | return true; | 
| 446 |  |  | } | 
| 447 |  |  |  | 
| 448 |  |  | bool convert_matrix_f(double *src, std::vector<std::vector<double> > &dst, | 
| 449 |  |  | int rows, int cols) | 
| 450 |  |  | { | 
| 451 |  |  | int i, j, idx; | 
| 452 |  |  |  | 
| 453 |  |  | dst.resize(rows); | 
| 454 |  |  | for ( i = 0 ; i < rows ; i++ ) | 
| 455 |  |  | { | 
| 456 |  |  | idx = i * cols; | 
| 457 |  |  | dst[i].resize(cols); | 
| 458 |  |  | for ( j = 0 ; j < cols ; j++ ) | 
| 459 |  |  | dst[i][j] = src[idx+j]; | 
| 460 |  |  | } | 
| 461 |  |  |  | 
| 462 |  |  | return true; | 
| 463 |  |  | } | 
| 464 |  |  |  | 
| 465 |  |  | bool convert_matrix_ff(double **src, std::vector<std::vector<double> > &dst, | 
| 466 |  |  | int rows, int cols) | 
| 467 |  |  | { | 
| 468 |  |  | int i, j; | 
| 469 |  |  |  | 
| 470 |  |  | dst.resize(rows); | 
| 471 |  |  | for ( i = 0 ; i < rows ; i++ ) | 
| 472 |  |  | { | 
| 473 |  |  | dst[i].resize(cols); | 
| 474 |  |  | for ( j = 0 ; j < cols ; j++ ) | 
| 475 |  |  | dst[i][j] = src[i][j]; | 
| 476 |  |  | } | 
| 477 |  |  |  | 
| 478 |  |  | return true; | 
| 479 |  |  | } | 
| 480 |  |  |  | 
| 481 |  |  | bool convert_matrix_f_ff(double *src, double **dst, int rows, int cols) | 
| 482 |  |  | { | 
| 483 |  |  | int i, j, idx; | 
| 484 |  |  |  | 
| 485 |  |  | for ( i = 0 ; i < rows ; i++ ) | 
| 486 |  |  | { | 
| 487 |  |  | idx = i * cols; | 
| 488 |  |  | for ( j = 0 ; j < cols ; j++ ) | 
| 489 |  |  | dst[i][j] = src[idx+j]; | 
| 490 |  |  | } | 
| 491 |  |  |  | 
| 492 |  |  | return true; | 
| 493 |  |  | } | 
| 494 |  |  |  | 
| 495 |  |  | bool convert_matrix_ff_f(double **src, double *dst, int rows, int cols) | 
| 496 |  |  | { | 
| 497 |  |  | int i, j, idx; | 
| 498 |  |  |  | 
| 499 |  |  | for ( i = 0 ; i < rows ; i++ ) | 
| 500 |  |  | { | 
| 501 |  |  | idx = i * cols; | 
| 502 |  |  | for ( j = 0 ; j < cols ; j++ ) | 
| 503 |  |  | dst[idx+j] = src[i][j]; | 
| 504 |  |  | } | 
| 505 |  |  |  | 
| 506 |  |  | return true; | 
| 507 |  |  | } | 
| 508 |  |  |  | 
| 509 |  |  | } // end namespace OpenBabel | 
| 510 |  |  |  | 
| 511 |  |  | //! \file matrix.cpp | 
| 512 |  |  | //! \brief Operations on arbitrary-sized matrix. | 
| 513 |  |  |  |