| 1 |
tim |
741 |
/********************************************************************** |
| 2 |
|
|
matrix.cpp - Operations on arbitrary-sized matrix. |
| 3 |
|
|
|
| 4 |
|
|
Copyright (C) 1998-2001 by OpenEye Scientific Software, Inc. |
| 5 |
|
|
Some portions Copyright (C) 2001-2005 by Geoffrey R. Hutchison |
| 6 |
|
|
|
| 7 |
|
|
This file is part of the Open Babel project. |
| 8 |
|
|
For more information, see <http://openbabel.sourceforge.net/> |
| 9 |
|
|
|
| 10 |
|
|
This program is free software; you can redistribute it and/or modify |
| 11 |
|
|
it under the terms of the GNU General Public License as published by |
| 12 |
|
|
the Free Software Foundation version 2 of the License. |
| 13 |
|
|
|
| 14 |
|
|
This program is distributed in the hope that it will be useful, |
| 15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 17 |
|
|
GNU General Public License for more details. |
| 18 |
|
|
***********************************************************************/ |
| 19 |
|
|
|
| 20 |
|
|
#include "matrix.hpp" |
| 21 |
|
|
#include "vector3.hpp" |
| 22 |
|
|
|
| 23 |
|
|
using namespace std; |
| 24 |
|
|
|
| 25 |
|
|
namespace OpenBabel |
| 26 |
|
|
{ |
| 27 |
|
|
|
| 28 |
|
|
void print_matrix(std::vector<std::vector<double> > &m) |
| 29 |
|
|
{ |
| 30 |
|
|
unsigned int i,j; |
| 31 |
|
|
|
| 32 |
|
|
for (i = 0; i < m.size(); i++) |
| 33 |
|
|
{ |
| 34 |
|
|
for (j = 0; j < m[i].size(); j++) |
| 35 |
|
|
printf("%5.2f",m[i][j]); |
| 36 |
|
|
printf("\n"); |
| 37 |
|
|
} |
| 38 |
|
|
} |
| 39 |
|
|
|
| 40 |
|
|
void print_matrix_f(double *m, int rows, int cols) |
| 41 |
|
|
{ |
| 42 |
|
|
int i,j,idx; |
| 43 |
|
|
|
| 44 |
|
|
for (i = 0; i < rows; i++) |
| 45 |
|
|
{ |
| 46 |
|
|
idx = i * cols; |
| 47 |
|
|
for (j = 0; j < cols; j++) |
| 48 |
|
|
printf("%5.2f",m[idx+j]); |
| 49 |
|
|
printf("\n"); |
| 50 |
|
|
} |
| 51 |
|
|
} |
| 52 |
|
|
|
| 53 |
|
|
void print_matrix_ff(double **m, int rows, int cols) |
| 54 |
|
|
{ |
| 55 |
|
|
int i,j; |
| 56 |
|
|
|
| 57 |
|
|
for (i = 0; i < rows; i++) |
| 58 |
|
|
{ |
| 59 |
|
|
for (j = 0; j < cols; j++) |
| 60 |
|
|
printf("%5.2f",m[i][j]); |
| 61 |
|
|
printf("\n"); |
| 62 |
|
|
} |
| 63 |
|
|
} |
| 64 |
|
|
|
| 65 |
|
|
bool mult_matrix(std::vector<std::vector<double> > &c, |
| 66 |
|
|
std::vector<std::vector<double> > &a, |
| 67 |
|
|
std::vector<std::vector<double> > &b) |
| 68 |
|
|
{ |
| 69 |
|
|
unsigned int i,j,k; |
| 70 |
|
|
|
| 71 |
|
|
if (a.size() != b.size()) |
| 72 |
|
|
return(false); |
| 73 |
|
|
|
| 74 |
|
|
c.resize(a.size()); |
| 75 |
|
|
|
| 76 |
|
|
for (i = 0; i < a.size(); i++) |
| 77 |
|
|
{ |
| 78 |
|
|
c[i].resize(b[i].size()); |
| 79 |
|
|
for (j = 0; j < b[i].size(); j++) |
| 80 |
|
|
{ |
| 81 |
|
|
c[i][j] = 0.0; |
| 82 |
|
|
for (k = 0; k < a[i].size(); k++) |
| 83 |
|
|
c[i][j] = c[i][j] + a[i][k] * b[k][j]; |
| 84 |
|
|
} |
| 85 |
|
|
} |
| 86 |
|
|
|
| 87 |
|
|
return(true); |
| 88 |
|
|
} |
| 89 |
|
|
|
| 90 |
|
|
bool mult_matrix_f(double *c, double *a, double *b, int rows, int cols) |
| 91 |
|
|
{ |
| 92 |
|
|
int i,j,k,idx; |
| 93 |
|
|
|
| 94 |
|
|
for ( i = 0 ; i < rows ; i++ ) |
| 95 |
|
|
{ |
| 96 |
|
|
idx = i * cols; |
| 97 |
|
|
for ( j = 0; j < cols ; j++ ) |
| 98 |
|
|
{ |
| 99 |
|
|
c[idx+j] = 0.0; |
| 100 |
|
|
for ( k = 0; k < cols ; k++ ) |
| 101 |
|
|
c[idx+j] = c[idx+j] + a[idx+k] * b[(k*cols)+j]; |
| 102 |
|
|
} |
| 103 |
|
|
} |
| 104 |
|
|
|
| 105 |
|
|
return(true); |
| 106 |
|
|
} |
| 107 |
|
|
|
| 108 |
|
|
bool mult_matrix_ff(double **c, double **a, double **b, int rows, int cols) |
| 109 |
|
|
{ |
| 110 |
|
|
int i,j,k; |
| 111 |
|
|
|
| 112 |
|
|
for ( i = 0 ; i < rows ; i++ ) |
| 113 |
|
|
for ( j = 0; j < cols ; j++ ) |
| 114 |
|
|
{ |
| 115 |
|
|
c[i][j] = 0.0; |
| 116 |
|
|
for ( k = 0; k < cols ; k++ ) |
| 117 |
|
|
c[i][j] = c[i][j] + a[i][k] * b[k][j]; |
| 118 |
|
|
} |
| 119 |
|
|
|
| 120 |
|
|
return(true); |
| 121 |
|
|
} |
| 122 |
|
|
|
| 123 |
|
|
bool invert_matrix(std::vector<std::vector<double> > &mat, double &det) |
| 124 |
|
|
{ |
| 125 |
|
|
int i, j, k, m, n, row = 0, col = 0; |
| 126 |
|
|
double tempo, big, pvt; |
| 127 |
|
|
|
| 128 |
|
|
vector<int> pvt_ind; |
| 129 |
|
|
vector<vector<int> > index; |
| 130 |
|
|
|
| 131 |
|
|
int cols = mat[0].size(); |
| 132 |
|
|
int rows = mat.size(); |
| 133 |
|
|
|
| 134 |
|
|
pvt_ind.resize(mat[0].size()); |
| 135 |
|
|
|
| 136 |
|
|
index.resize(mat.size()); |
| 137 |
|
|
for (i = 0; (unsigned)i < mat.size(); i++) |
| 138 |
|
|
index[i].resize(2); |
| 139 |
|
|
|
| 140 |
|
|
// make sure we have a square matrix |
| 141 |
|
|
// #rows == #cols; |
| 142 |
|
|
if (cols != rows) |
| 143 |
|
|
{ |
| 144 |
|
|
det = 0.0; |
| 145 |
|
|
return(false); |
| 146 |
|
|
} |
| 147 |
|
|
|
| 148 |
|
|
det = 1.0; |
| 149 |
|
|
|
| 150 |
|
|
for (i = 0; i < cols; i++) |
| 151 |
|
|
pvt_ind[i] = rows+1; |
| 152 |
|
|
|
| 153 |
|
|
for (i = 0; i < cols; i++) |
| 154 |
|
|
{ |
| 155 |
|
|
big = 0.0; |
| 156 |
|
|
for (j = 0; j < cols; j++) |
| 157 |
|
|
{ |
| 158 |
|
|
if (pvt_ind[j] != 0) |
| 159 |
|
|
for (k = 0; k < cols; k++) |
| 160 |
|
|
{ |
| 161 |
|
|
if (fabs(big) < fabs(mat[j][k])) |
| 162 |
|
|
{ |
| 163 |
|
|
row = j; |
| 164 |
|
|
col = k; |
| 165 |
|
|
big = mat[j][k]; |
| 166 |
|
|
} |
| 167 |
|
|
} |
| 168 |
|
|
} |
| 169 |
|
|
|
| 170 |
|
|
pvt_ind[col]++; |
| 171 |
|
|
if (row != col) |
| 172 |
|
|
{ |
| 173 |
|
|
det = -det; |
| 174 |
|
|
for (m = 0; m < cols; m++) |
| 175 |
|
|
{ |
| 176 |
|
|
tempo = mat[row][m]; |
| 177 |
|
|
mat[row][m] = mat[col][m]; |
| 178 |
|
|
mat[col][m] = tempo; |
| 179 |
|
|
} |
| 180 |
|
|
} |
| 181 |
|
|
|
| 182 |
|
|
index[i][0] = row; |
| 183 |
|
|
index[i][1] = col; |
| 184 |
|
|
pvt = mat[col][col]; |
| 185 |
|
|
det *= pvt; |
| 186 |
|
|
|
| 187 |
|
|
mat[col][col] = 1.0; |
| 188 |
|
|
|
| 189 |
|
|
for (m = 0; m < cols; m++) |
| 190 |
|
|
mat[col][m] /= pvt; |
| 191 |
|
|
|
| 192 |
|
|
for (n = 0; n < cols; n++) |
| 193 |
|
|
if (n != col) |
| 194 |
|
|
{ |
| 195 |
|
|
tempo = mat[n][col]; |
| 196 |
|
|
mat[n][col] = 0.0; |
| 197 |
|
|
for (m = 0; m < cols; m++) |
| 198 |
|
|
mat[n][m] -= mat[col][m] * tempo; |
| 199 |
|
|
} |
| 200 |
|
|
} |
| 201 |
|
|
|
| 202 |
|
|
for (i = 0; i < cols; i++) |
| 203 |
|
|
{ |
| 204 |
|
|
m = cols - 1; |
| 205 |
|
|
if (index[m][0] != index[m][1]) |
| 206 |
|
|
{ |
| 207 |
|
|
row = index[m][0]; |
| 208 |
|
|
col = index[m][1]; |
| 209 |
|
|
for (k = 0; k < cols; k++) |
| 210 |
|
|
{ |
| 211 |
|
|
tempo = mat[k][row]; |
| 212 |
|
|
mat[k][row] = mat[k][col]; |
| 213 |
|
|
mat[k][col] = tempo; |
| 214 |
|
|
} |
| 215 |
|
|
} |
| 216 |
|
|
} |
| 217 |
|
|
|
| 218 |
|
|
return(true); |
| 219 |
|
|
} |
| 220 |
|
|
|
| 221 |
|
|
bool invert_matrix_f(double *mat, double &det, int rows, int cols) |
| 222 |
|
|
{ |
| 223 |
|
|
int i, j, k, m, n, row = 0, col = 0, idx1, idx2; |
| 224 |
|
|
double tempo, big, pvt; |
| 225 |
|
|
|
| 226 |
|
|
vector<int> pvt_ind; |
| 227 |
|
|
vector<vector<int> > index; |
| 228 |
|
|
|
| 229 |
|
|
pvt_ind.resize(cols); |
| 230 |
|
|
index.resize(rows); |
| 231 |
|
|
|
| 232 |
|
|
for (i = 0; i < rows; i++) |
| 233 |
|
|
index[i].resize(2); |
| 234 |
|
|
|
| 235 |
|
|
// make sure we have a square matrix |
| 236 |
|
|
// #rows == #cols; |
| 237 |
|
|
if (cols != rows) |
| 238 |
|
|
{ |
| 239 |
|
|
det = 0.0; |
| 240 |
|
|
return(false); |
| 241 |
|
|
} |
| 242 |
|
|
|
| 243 |
|
|
det = 1.0; |
| 244 |
|
|
|
| 245 |
|
|
for (i = 0; i < cols; i++) |
| 246 |
|
|
pvt_ind[i] = rows+1; |
| 247 |
|
|
|
| 248 |
|
|
for (i = 0; i < cols; i++) |
| 249 |
|
|
{ |
| 250 |
|
|
big = 0.0; |
| 251 |
|
|
for (j = 0; j < cols; j++) |
| 252 |
|
|
{ |
| 253 |
|
|
if (pvt_ind[j] != 0) |
| 254 |
|
|
{ |
| 255 |
|
|
idx1 = (j * cols); |
| 256 |
|
|
for (k = 0; k < cols; k++) |
| 257 |
|
|
{ |
| 258 |
|
|
idx2 = idx1 + k; |
| 259 |
|
|
if (fabs(big) < fabs(mat[idx2])) |
| 260 |
|
|
{ |
| 261 |
|
|
row = j; |
| 262 |
|
|
col = k; |
| 263 |
|
|
big = mat[idx2]; |
| 264 |
|
|
} |
| 265 |
|
|
} |
| 266 |
|
|
} |
| 267 |
|
|
} |
| 268 |
|
|
|
| 269 |
|
|
pvt_ind[col]++; |
| 270 |
|
|
if (row != col) |
| 271 |
|
|
{ |
| 272 |
|
|
det = -det; |
| 273 |
|
|
idx1 = row * cols; |
| 274 |
|
|
idx2 = col * cols; |
| 275 |
|
|
for (m = 0; m < cols; m++) |
| 276 |
|
|
{ |
| 277 |
|
|
tempo = mat[idx1+m]; |
| 278 |
|
|
mat[idx1+m] = mat[idx2+m]; |
| 279 |
|
|
mat[idx2+m] = tempo; |
| 280 |
|
|
} |
| 281 |
|
|
} |
| 282 |
|
|
|
| 283 |
|
|
index[i][0] = row; |
| 284 |
|
|
index[i][1] = col; |
| 285 |
|
|
|
| 286 |
|
|
idx1 = (col*cols); |
| 287 |
|
|
pvt = mat[idx1+col]; |
| 288 |
|
|
det *= pvt; |
| 289 |
|
|
|
| 290 |
|
|
mat[idx1+col] = 1.0; |
| 291 |
|
|
|
| 292 |
|
|
for (m = 0; m < cols; m++) |
| 293 |
|
|
mat[idx1+m] /= pvt; |
| 294 |
|
|
|
| 295 |
|
|
for (n = 0; n < cols; n++) |
| 296 |
|
|
if (n != col) |
| 297 |
|
|
{ |
| 298 |
|
|
idx1 = n * cols; |
| 299 |
|
|
tempo = mat[idx1 + col]; |
| 300 |
|
|
mat[idx1 + col] = 0.0; |
| 301 |
|
|
|
| 302 |
|
|
idx2 = col * cols; |
| 303 |
|
|
for (m = 0; m < cols; m++) |
| 304 |
|
|
mat[idx1 + m] -= mat[idx2 + m] * tempo; |
| 305 |
|
|
} |
| 306 |
|
|
} |
| 307 |
|
|
|
| 308 |
|
|
for (i = 0; i < cols; i++) |
| 309 |
|
|
{ |
| 310 |
|
|
m = cols - 1; |
| 311 |
|
|
if (index[m][0] != index[m][1]) |
| 312 |
|
|
{ |
| 313 |
|
|
row = index[m][0]; |
| 314 |
|
|
col = index[m][1]; |
| 315 |
|
|
for (k = 0; k < cols; k++) |
| 316 |
|
|
{ |
| 317 |
|
|
idx1 = (k * cols); |
| 318 |
|
|
idx2 = idx1 + col; |
| 319 |
|
|
idx1 += row; |
| 320 |
|
|
|
| 321 |
|
|
tempo = mat[idx1]; |
| 322 |
|
|
mat[idx1] = mat[idx2]; |
| 323 |
|
|
mat[idx2] = tempo; |
| 324 |
|
|
} |
| 325 |
|
|
} |
| 326 |
|
|
} |
| 327 |
|
|
|
| 328 |
|
|
return(true); |
| 329 |
|
|
} |
| 330 |
|
|
|
| 331 |
|
|
bool invert_matrix_ff(double **mat, double &det, int rows, int cols) |
| 332 |
|
|
{ |
| 333 |
|
|
int i, j, k, m, n, row = 0, col = 0; |
| 334 |
|
|
double tempo, big, pvt; |
| 335 |
|
|
|
| 336 |
|
|
vector<int> pvt_ind; |
| 337 |
|
|
vector<vector<int> > index; |
| 338 |
|
|
|
| 339 |
|
|
pvt_ind.resize(cols); |
| 340 |
|
|
index.resize(rows); |
| 341 |
|
|
|
| 342 |
|
|
for (i = 0; i < rows; i++) |
| 343 |
|
|
index[i].resize(2); |
| 344 |
|
|
|
| 345 |
|
|
// make sure we have a square matrix |
| 346 |
|
|
// #rows == #cols; |
| 347 |
|
|
if (cols != rows) |
| 348 |
|
|
{ |
| 349 |
|
|
det = 0.0; |
| 350 |
|
|
return(false); |
| 351 |
|
|
} |
| 352 |
|
|
|
| 353 |
|
|
det = 1.0; |
| 354 |
|
|
|
| 355 |
|
|
for (i = 0; i < cols; i++) |
| 356 |
|
|
pvt_ind[i] = rows+1; |
| 357 |
|
|
|
| 358 |
|
|
for (i = 0; i < cols; i++) |
| 359 |
|
|
{ |
| 360 |
|
|
big = 0.0; |
| 361 |
|
|
for (j = 0; j < cols; j++) |
| 362 |
|
|
{ |
| 363 |
|
|
if (pvt_ind[j] != 0) |
| 364 |
|
|
for (k = 0; k < cols; k++) |
| 365 |
|
|
{ |
| 366 |
|
|
if (fabs(big) < fabs(mat[j][k])) |
| 367 |
|
|
{ |
| 368 |
|
|
row = j; |
| 369 |
|
|
col = k; |
| 370 |
|
|
big = mat[j][k]; |
| 371 |
|
|
} |
| 372 |
|
|
} |
| 373 |
|
|
} |
| 374 |
|
|
|
| 375 |
|
|
pvt_ind[col]++; |
| 376 |
|
|
if (row != col) |
| 377 |
|
|
{ |
| 378 |
|
|
det = -det; |
| 379 |
|
|
for (m = 0; m < cols; m++) |
| 380 |
|
|
{ |
| 381 |
|
|
tempo = mat[row][m]; |
| 382 |
|
|
mat[row][m] = mat[col][m]; |
| 383 |
|
|
mat[col][m] = tempo; |
| 384 |
|
|
} |
| 385 |
|
|
} |
| 386 |
|
|
|
| 387 |
|
|
index[i][0] = row; |
| 388 |
|
|
index[i][1] = col; |
| 389 |
|
|
pvt = mat[col][col]; |
| 390 |
|
|
det *= pvt; |
| 391 |
|
|
|
| 392 |
|
|
mat[col][col] = 1.0; |
| 393 |
|
|
|
| 394 |
|
|
for (m = 0; m < cols; m++) |
| 395 |
|
|
mat[col][m] /= pvt; |
| 396 |
|
|
|
| 397 |
|
|
for (n = 0; n < cols; n++) |
| 398 |
|
|
if (n != col) |
| 399 |
|
|
{ |
| 400 |
|
|
tempo = mat[n][col]; |
| 401 |
|
|
mat[n][col] = 0.0; |
| 402 |
|
|
for (m = 0; m < cols; m++) |
| 403 |
|
|
mat[n][m] -= mat[col][m] * tempo; |
| 404 |
|
|
} |
| 405 |
|
|
} |
| 406 |
|
|
|
| 407 |
|
|
for (i = 0; i < cols; i++) |
| 408 |
|
|
{ |
| 409 |
|
|
m = cols - 1; |
| 410 |
|
|
if (index[m][0] != index[m][1]) |
| 411 |
|
|
{ |
| 412 |
|
|
row = index[m][0]; |
| 413 |
|
|
col = index[m][1]; |
| 414 |
|
|
for (k = 0; k < cols; k++) |
| 415 |
|
|
{ |
| 416 |
|
|
tempo = mat[k][row]; |
| 417 |
|
|
mat[k][row] = mat[k][col]; |
| 418 |
|
|
mat[k][col] = tempo; |
| 419 |
|
|
} |
| 420 |
|
|
} |
| 421 |
|
|
} |
| 422 |
|
|
|
| 423 |
|
|
return(true); |
| 424 |
|
|
} |
| 425 |
|
|
|
| 426 |
|
|
bool convert_matrix_f(std::vector<std::vector<double> > &src, double *dst) |
| 427 |
|
|
{ |
| 428 |
|
|
unsigned int i, j, idx = 0; |
| 429 |
|
|
|
| 430 |
|
|
for ( i = 0 ; i < src.size() ; i++ ) |
| 431 |
|
|
for ( j = 0 ; j < src[i].size() ; j++ ) |
| 432 |
|
|
dst[idx++] = src[i][j]; |
| 433 |
|
|
|
| 434 |
|
|
return true; |
| 435 |
|
|
} |
| 436 |
|
|
|
| 437 |
|
|
bool convert_matrix_ff(std::vector<std::vector<double> > &src, double **dst) |
| 438 |
|
|
{ |
| 439 |
|
|
unsigned int i, j; |
| 440 |
|
|
|
| 441 |
|
|
for ( i = 0 ; i < src.size() ; i++ ) |
| 442 |
|
|
for ( j = 0 ; j < src[i].size() ; j++ ) |
| 443 |
|
|
dst[i][j] = src[i][j]; |
| 444 |
|
|
|
| 445 |
|
|
return true; |
| 446 |
|
|
} |
| 447 |
|
|
|
| 448 |
|
|
bool convert_matrix_f(double *src, std::vector<std::vector<double> > &dst, |
| 449 |
|
|
int rows, int cols) |
| 450 |
|
|
{ |
| 451 |
|
|
int i, j, idx; |
| 452 |
|
|
|
| 453 |
|
|
dst.resize(rows); |
| 454 |
|
|
for ( i = 0 ; i < rows ; i++ ) |
| 455 |
|
|
{ |
| 456 |
|
|
idx = i * cols; |
| 457 |
|
|
dst[i].resize(cols); |
| 458 |
|
|
for ( j = 0 ; j < cols ; j++ ) |
| 459 |
|
|
dst[i][j] = src[idx+j]; |
| 460 |
|
|
} |
| 461 |
|
|
|
| 462 |
|
|
return true; |
| 463 |
|
|
} |
| 464 |
|
|
|
| 465 |
|
|
bool convert_matrix_ff(double **src, std::vector<std::vector<double> > &dst, |
| 466 |
|
|
int rows, int cols) |
| 467 |
|
|
{ |
| 468 |
|
|
int i, j; |
| 469 |
|
|
|
| 470 |
|
|
dst.resize(rows); |
| 471 |
|
|
for ( i = 0 ; i < rows ; i++ ) |
| 472 |
|
|
{ |
| 473 |
|
|
dst[i].resize(cols); |
| 474 |
|
|
for ( j = 0 ; j < cols ; j++ ) |
| 475 |
|
|
dst[i][j] = src[i][j]; |
| 476 |
|
|
} |
| 477 |
|
|
|
| 478 |
|
|
return true; |
| 479 |
|
|
} |
| 480 |
|
|
|
| 481 |
|
|
bool convert_matrix_f_ff(double *src, double **dst, int rows, int cols) |
| 482 |
|
|
{ |
| 483 |
|
|
int i, j, idx; |
| 484 |
|
|
|
| 485 |
|
|
for ( i = 0 ; i < rows ; i++ ) |
| 486 |
|
|
{ |
| 487 |
|
|
idx = i * cols; |
| 488 |
|
|
for ( j = 0 ; j < cols ; j++ ) |
| 489 |
|
|
dst[i][j] = src[idx+j]; |
| 490 |
|
|
} |
| 491 |
|
|
|
| 492 |
|
|
return true; |
| 493 |
|
|
} |
| 494 |
|
|
|
| 495 |
|
|
bool convert_matrix_ff_f(double **src, double *dst, int rows, int cols) |
| 496 |
|
|
{ |
| 497 |
|
|
int i, j, idx; |
| 498 |
|
|
|
| 499 |
|
|
for ( i = 0 ; i < rows ; i++ ) |
| 500 |
|
|
{ |
| 501 |
|
|
idx = i * cols; |
| 502 |
|
|
for ( j = 0 ; j < cols ; j++ ) |
| 503 |
|
|
dst[idx+j] = src[i][j]; |
| 504 |
|
|
} |
| 505 |
|
|
|
| 506 |
|
|
return true; |
| 507 |
|
|
} |
| 508 |
|
|
|
| 509 |
|
|
} // end namespace OpenBabel |
| 510 |
|
|
|
| 511 |
|
|
//! \file matrix.cpp |
| 512 |
|
|
//! \brief Operations on arbitrary-sized matrix. |
| 513 |
|
|
|