1 |
tim |
741 |
/********************************************************************** |
2 |
|
|
matrix3x3.cpp - Handle 3D Rotation matrix. |
3 |
|
|
|
4 |
|
|
Copyright (C) 1998-2001 by OpenEye Scientific Software, Inc. |
5 |
|
|
Some portions Copyright (C) 2001-2005 by Geoffrey R. Hutchison |
6 |
|
|
|
7 |
|
|
This file is part of the Open Babel project. |
8 |
|
|
For more information, see <http://openbabel.sourceforge.net/> |
9 |
|
|
|
10 |
|
|
This program is free software; you can redistribute it and/or modify |
11 |
|
|
it under the terms of the GNU General Public License as published by |
12 |
|
|
the Free Software Foundation version 2 of the License. |
13 |
|
|
|
14 |
|
|
This program is distributed in the hope that it will be useful, |
15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
17 |
|
|
GNU General Public License for more details. |
18 |
|
|
***********************************************************************/ |
19 |
|
|
|
20 |
|
|
#ifndef OB_MATRIX3x3_H |
21 |
|
|
#define OB_MATRIX3x3_H |
22 |
|
|
|
23 |
|
|
#include "oberror.hpp" |
24 |
|
|
|
25 |
|
|
#if HAVE_IOSTREAM |
26 |
|
|
#include <iostream> |
27 |
|
|
#elif HAVE_IOSTREAM_H |
28 |
|
|
#include <iostream.h> |
29 |
|
|
#endif |
30 |
|
|
|
31 |
|
|
#if HAVE_FSTREAM |
32 |
|
|
#include <fstream> |
33 |
|
|
#elif HAVE_FSTREAM_H |
34 |
|
|
#include <fstream.h> |
35 |
|
|
#endif |
36 |
|
|
|
37 |
|
|
#include <math.h> |
38 |
|
|
|
39 |
|
|
#include "obutil.hpp" |
40 |
|
|
#include "vector3.hpp" |
41 |
|
|
|
42 |
|
|
#ifndef PI |
43 |
|
|
#define PI 3.1415926535897932384626433 |
44 |
|
|
#endif |
45 |
|
|
|
46 |
|
|
#ifndef RAD_TO_DEG |
47 |
|
|
#define RAD_TO_DEG 180.0/PI |
48 |
|
|
#endif |
49 |
|
|
|
50 |
|
|
#ifndef DEG_TO_RAD |
51 |
|
|
#define DEG_TO_RAD PI/180.0 |
52 |
|
|
#endif |
53 |
|
|
|
54 |
|
|
namespace OpenBabel |
55 |
|
|
{ |
56 |
|
|
|
57 |
|
|
// class introduction in matrix3x3.cpp |
58 |
|
|
class OBAPI matrix3x3 |
59 |
|
|
{ |
60 |
|
|
//! Elements of the matrix |
61 |
|
|
/*! This array holds the matrix. The first index refers to the |
62 |
|
|
row, the second the column. */ |
63 |
|
|
double ele[3][3]; |
64 |
|
|
|
65 |
|
|
public: |
66 |
|
|
//! constructs the zero-matrix |
67 |
|
|
matrix3x3(void) |
68 |
|
|
{ |
69 |
|
|
ele[0][0] = 0.0; |
70 |
|
|
ele[0][1] = 0.0; |
71 |
|
|
ele[0][2] = 0.0; |
72 |
|
|
ele[1][0] = 0.0; |
73 |
|
|
ele[1][1] = 0.0; |
74 |
|
|
ele[1][2] = 0.0; |
75 |
|
|
ele[2][0] = 0.0; |
76 |
|
|
ele[2][1] = 0.0; |
77 |
|
|
ele[2][2] = 0.0; |
78 |
|
|
} |
79 |
|
|
|
80 |
|
|
//! constructs s times the unit matrix |
81 |
|
|
matrix3x3(double s) |
82 |
|
|
{ |
83 |
|
|
ele[0][0] = s; |
84 |
|
|
ele[0][1] = 0.0; |
85 |
|
|
ele[0][2] = 0.0; |
86 |
|
|
ele[1][0] = 0.0; |
87 |
|
|
ele[1][1] = s; |
88 |
|
|
ele[1][2] = 0.0; |
89 |
|
|
ele[2][0] = 0.0; |
90 |
|
|
ele[2][1] = 0.0; |
91 |
|
|
ele[2][2] = s; |
92 |
|
|
} |
93 |
|
|
|
94 |
|
|
//! constructs a matrix from row vectors |
95 |
|
|
matrix3x3(vector3 row1,vector3 row2,vector3 row3) |
96 |
|
|
{ |
97 |
|
|
ele[0][0] = row1.x(); |
98 |
|
|
ele[0][1] = row1.y(); |
99 |
|
|
ele[0][2] = row1.z(); |
100 |
|
|
ele[1][0] = row2.x(); |
101 |
|
|
ele[1][1] = row2.y(); |
102 |
|
|
ele[1][2] = row2.z(); |
103 |
|
|
ele[2][0] = row3.x(); |
104 |
|
|
ele[2][1] = row3.y(); |
105 |
|
|
ele[2][2] = row3.z(); |
106 |
|
|
} |
107 |
|
|
|
108 |
|
|
//! constructs a matrix from a 3x3-array of doubles |
109 |
|
|
/*! constructs a matrix from a 3x3-array of doubles. The first |
110 |
|
|
index represents the row, the second index the column */ |
111 |
|
|
matrix3x3(double d[3][3]) |
112 |
|
|
{ |
113 |
|
|
ele[0][0] = d[0][0]; |
114 |
|
|
ele[0][1] = d[0][1]; |
115 |
|
|
ele[0][2] = d[0][2]; |
116 |
|
|
ele[1][0] = d[1][0]; |
117 |
|
|
ele[1][1] = d[1][1]; |
118 |
|
|
ele[1][2] = d[1][2]; |
119 |
|
|
ele[2][0] = d[2][0]; |
120 |
|
|
ele[2][1] = d[2][1]; |
121 |
|
|
ele[2][2] = d[2][2]; |
122 |
|
|
} |
123 |
|
|
|
124 |
|
|
//! access function |
125 |
|
|
/*! writes the matrix into the 1-dimensional array m, row by |
126 |
|
|
row. The array must be able to hold 9 doubles, otherwise your |
127 |
|
|
prgram will segfault. */ |
128 |
|
|
void GetArray(double *m) |
129 |
|
|
{ |
130 |
|
|
m[0] = ele[0][0]; |
131 |
|
|
m[1] = ele[0][1]; |
132 |
|
|
m[2] = ele[0][2]; |
133 |
|
|
m[3] = ele[1][0]; |
134 |
|
|
m[4] = ele[1][1]; |
135 |
|
|
m[5] = ele[1][2]; |
136 |
|
|
m[6] = ele[2][0]; |
137 |
|
|
m[7] = ele[2][1]; |
138 |
|
|
m[8] = ele[2][2]; |
139 |
|
|
} |
140 |
|
|
|
141 |
|
|
//! Calculates the inverse of a matrix. |
142 |
|
|
matrix3x3 inverse(void) const throw(OBError); |
143 |
|
|
|
144 |
|
|
//! Calculates the transpose of a matrix. |
145 |
|
|
matrix3x3 transpose(void) const; |
146 |
|
|
|
147 |
|
|
//! generates a matrix for a random rotation |
148 |
|
|
void randomRotation(OBRandom &rnd); |
149 |
|
|
|
150 |
|
|
//! returns the determinant of the matrix |
151 |
|
|
double determinant() const; |
152 |
|
|
|
153 |
|
|
//! Checks if a matrix is symmetric |
154 |
|
|
bool isSymmetric(void) const; |
155 |
|
|
|
156 |
|
|
//! Checks if a matrix is orthogonal |
157 |
|
|
/*! This method checks if a matrix describes an orthogonal |
158 |
|
|
transformation, i.e. if all column vectors are normalized and |
159 |
|
|
are mutually orthogonal. An orthogonal transformation is a |
160 |
|
|
transformation the preserves length and angle. |
161 |
|
|
|
162 |
|
|
The check is performed using the method isUnitMatrix() to |
163 |
|
|
check if |
164 |
|
|
\code |
165 |
|
|
*this * transpose() |
166 |
|
|
\endcode |
167 |
|
|
is a unit matrix. The criterion is therefore numerically quite |
168 |
|
|
tight. */ |
169 |
|
|
bool isOrthogonal(void) const |
170 |
|
|
{ |
171 |
|
|
return (*this * transpose()).isUnitMatrix(); |
172 |
|
|
}; |
173 |
|
|
|
174 |
|
|
//! Checks if a matrix is diagonal |
175 |
|
|
bool isDiagonal(void) const; |
176 |
|
|
|
177 |
|
|
//! Checks if a matrix is the unit matrix |
178 |
|
|
bool isUnitMatrix(void) const; |
179 |
|
|
|
180 |
|
|
//! access function |
181 |
|
|
/*! \warning row or column are not in the range 0..2, random |
182 |
|
|
results are returned, and your program may even |
183 |
|
|
segfault. (Stefan Kebekus) |
184 |
|
|
|
185 |
|
|
\todo Replace this method with a more fool-proof version. |
186 |
|
|
*/ |
187 |
|
|
double Get(int row,int column) const |
188 |
|
|
{ |
189 |
|
|
if (row >= 0 && row <= 2 && column >= 0 && column <= 2) |
190 |
|
|
return(ele[row][column]); |
191 |
|
|
else |
192 |
|
|
return 0.0f; |
193 |
|
|
} |
194 |
|
|
|
195 |
|
|
//! access function |
196 |
|
|
/*! \warning if row or column are not in the range 0..2, random |
197 |
|
|
variables are overwritten, and your program may |
198 |
|
|
segfault. (Stefan Kebekus) |
199 |
|
|
|
200 |
|
|
\todo Replace this method with a more fool-proof version. |
201 |
|
|
*/ |
202 |
|
|
void Set(int row,int column, double v) |
203 |
|
|
{ |
204 |
|
|
if (row >= 0 && row <= 2 && column >= 0 && column <= 2) |
205 |
|
|
ele[row][column]= v; |
206 |
|
|
} |
207 |
|
|
|
208 |
|
|
//! access function |
209 |
|
|
/*! \warning If column is not in the range 0..2, the vector |
210 |
|
|
remains unchanged and an exception is thrown. */ |
211 |
|
|
void SetColumn(int column, const vector3 &v) throw(OBError); |
212 |
|
|
|
213 |
|
|
//! access function |
214 |
|
|
/*! \warning If column is not in the range 0..2, the vector |
215 |
|
|
remains unchanged and an exception is thrown. */ |
216 |
|
|
void SetRow(int row, const vector3 &v) throw(OBError); |
217 |
|
|
|
218 |
|
|
//! access function |
219 |
|
|
/*! \warning If col is not in the range 0..2, an exception is |
220 |
|
|
thrown. */ |
221 |
|
|
vector3 GetColumn(unsigned int col) const throw(OBError); |
222 |
|
|
|
223 |
|
|
//! access function |
224 |
|
|
/*! \warning If row is not in the range 0..2, an exception is |
225 |
|
|
thrown. */ |
226 |
|
|
vector3 GetRow(unsigned int row) const throw(OBError); |
227 |
|
|
|
228 |
|
|
|
229 |
|
|
//! divides all entries of the matrix by a scalar c |
230 |
|
|
matrix3x3 &operator/=(const double &c); |
231 |
|
|
|
232 |
|
|
void SetupRotMat(double,double,double); |
233 |
|
|
|
234 |
|
|
//! calculates a matrix that represents reflection on a plane |
235 |
|
|
void PlaneReflection(const vector3 &norm); |
236 |
|
|
|
237 |
|
|
//! calculates a rotation matrix |
238 |
|
|
void RotAboutAxisByAngle(const vector3 &axis, const double angle); |
239 |
|
|
|
240 |
|
|
void FillOrth(double,double,double,double,double,double); |
241 |
|
|
|
242 |
|
|
//! find the eigenvalues and -vectors of a symmetric matrix |
243 |
|
|
matrix3x3 findEigenvectorsIfSymmetric(vector3 &eigenvals) const throw(OBError); |
244 |
|
|
|
245 |
|
|
//! matrix-vector multiplication |
246 |
|
|
friend OBAPI vector3 operator *(const matrix3x3 &,const vector3 &); |
247 |
|
|
|
248 |
|
|
//! matrix-matrix multiplication |
249 |
|
|
friend OBAPI matrix3x3 operator *(const matrix3x3 &,const matrix3x3 &); |
250 |
|
|
|
251 |
|
|
friend OBAPI std::ostream& operator<< ( std::ostream&, const matrix3x3 & ) ; |
252 |
|
|
|
253 |
|
|
//! eigenvalue calculation |
254 |
|
|
static void jacobi(unsigned int n, double *a, double *d, double *v); |
255 |
|
|
}; |
256 |
|
|
|
257 |
|
|
OBAPI vector3 center_coords(double*,int); |
258 |
|
|
} |
259 |
|
|
|
260 |
|
|
#endif // OB_MATRIX3x3_H |
261 |
|
|
|
262 |
|
|
//! \file matrix3x3.h |
263 |
|
|
//! \brief Handle 3D Rotation matrix. |