| 1 |
/********************************************************************** |
| 2 |
matrix3x3.cpp - Handle 3D Rotation matrix. |
| 3 |
|
| 4 |
Copyright (C) 1998-2001 by OpenEye Scientific Software, Inc. |
| 5 |
Some portions Copyright (C) 2001-2005 by Geoffrey R. Hutchison |
| 6 |
|
| 7 |
This file is part of the Open Babel project. |
| 8 |
For more information, see <http://openbabel.sourceforge.net/> |
| 9 |
|
| 10 |
This program is free software; you can redistribute it and/or modify |
| 11 |
it under the terms of the GNU General Public License as published by |
| 12 |
the Free Software Foundation version 2 of the License. |
| 13 |
|
| 14 |
This program is distributed in the hope that it will be useful, |
| 15 |
but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 17 |
GNU General Public License for more details. |
| 18 |
***********************************************************************/ |
| 19 |
|
| 20 |
#ifndef OB_MATRIX3x3_H |
| 21 |
#define OB_MATRIX3x3_H |
| 22 |
|
| 23 |
#include "oberror.hpp" |
| 24 |
|
| 25 |
#if HAVE_IOSTREAM |
| 26 |
#include <iostream> |
| 27 |
#elif HAVE_IOSTREAM_H |
| 28 |
#include <iostream.h> |
| 29 |
#endif |
| 30 |
|
| 31 |
#if HAVE_FSTREAM |
| 32 |
#include <fstream> |
| 33 |
#elif HAVE_FSTREAM_H |
| 34 |
#include <fstream.h> |
| 35 |
#endif |
| 36 |
|
| 37 |
#include <math.h> |
| 38 |
|
| 39 |
#include "obutil.hpp" |
| 40 |
#include "vector3.hpp" |
| 41 |
|
| 42 |
#ifndef PI |
| 43 |
#define PI 3.1415926535897932384626433 |
| 44 |
#endif |
| 45 |
|
| 46 |
#ifndef RAD_TO_DEG |
| 47 |
#define RAD_TO_DEG 180.0/PI |
| 48 |
#endif |
| 49 |
|
| 50 |
#ifndef DEG_TO_RAD |
| 51 |
#define DEG_TO_RAD PI/180.0 |
| 52 |
#endif |
| 53 |
|
| 54 |
namespace OpenBabel |
| 55 |
{ |
| 56 |
|
| 57 |
// class introduction in matrix3x3.cpp |
| 58 |
class OBAPI matrix3x3 |
| 59 |
{ |
| 60 |
//! Elements of the matrix |
| 61 |
/*! This array holds the matrix. The first index refers to the |
| 62 |
row, the second the column. */ |
| 63 |
double ele[3][3]; |
| 64 |
|
| 65 |
public: |
| 66 |
//! constructs the zero-matrix |
| 67 |
matrix3x3(void) |
| 68 |
{ |
| 69 |
ele[0][0] = 0.0; |
| 70 |
ele[0][1] = 0.0; |
| 71 |
ele[0][2] = 0.0; |
| 72 |
ele[1][0] = 0.0; |
| 73 |
ele[1][1] = 0.0; |
| 74 |
ele[1][2] = 0.0; |
| 75 |
ele[2][0] = 0.0; |
| 76 |
ele[2][1] = 0.0; |
| 77 |
ele[2][2] = 0.0; |
| 78 |
} |
| 79 |
|
| 80 |
//! constructs s times the unit matrix |
| 81 |
matrix3x3(double s) |
| 82 |
{ |
| 83 |
ele[0][0] = s; |
| 84 |
ele[0][1] = 0.0; |
| 85 |
ele[0][2] = 0.0; |
| 86 |
ele[1][0] = 0.0; |
| 87 |
ele[1][1] = s; |
| 88 |
ele[1][2] = 0.0; |
| 89 |
ele[2][0] = 0.0; |
| 90 |
ele[2][1] = 0.0; |
| 91 |
ele[2][2] = s; |
| 92 |
} |
| 93 |
|
| 94 |
//! constructs a matrix from row vectors |
| 95 |
matrix3x3(vector3 row1,vector3 row2,vector3 row3) |
| 96 |
{ |
| 97 |
ele[0][0] = row1.x(); |
| 98 |
ele[0][1] = row1.y(); |
| 99 |
ele[0][2] = row1.z(); |
| 100 |
ele[1][0] = row2.x(); |
| 101 |
ele[1][1] = row2.y(); |
| 102 |
ele[1][2] = row2.z(); |
| 103 |
ele[2][0] = row3.x(); |
| 104 |
ele[2][1] = row3.y(); |
| 105 |
ele[2][2] = row3.z(); |
| 106 |
} |
| 107 |
|
| 108 |
//! constructs a matrix from a 3x3-array of doubles |
| 109 |
/*! constructs a matrix from a 3x3-array of doubles. The first |
| 110 |
index represents the row, the second index the column */ |
| 111 |
matrix3x3(double d[3][3]) |
| 112 |
{ |
| 113 |
ele[0][0] = d[0][0]; |
| 114 |
ele[0][1] = d[0][1]; |
| 115 |
ele[0][2] = d[0][2]; |
| 116 |
ele[1][0] = d[1][0]; |
| 117 |
ele[1][1] = d[1][1]; |
| 118 |
ele[1][2] = d[1][2]; |
| 119 |
ele[2][0] = d[2][0]; |
| 120 |
ele[2][1] = d[2][1]; |
| 121 |
ele[2][2] = d[2][2]; |
| 122 |
} |
| 123 |
|
| 124 |
//! access function |
| 125 |
/*! writes the matrix into the 1-dimensional array m, row by |
| 126 |
row. The array must be able to hold 9 doubles, otherwise your |
| 127 |
prgram will segfault. */ |
| 128 |
void GetArray(double *m) |
| 129 |
{ |
| 130 |
m[0] = ele[0][0]; |
| 131 |
m[1] = ele[0][1]; |
| 132 |
m[2] = ele[0][2]; |
| 133 |
m[3] = ele[1][0]; |
| 134 |
m[4] = ele[1][1]; |
| 135 |
m[5] = ele[1][2]; |
| 136 |
m[6] = ele[2][0]; |
| 137 |
m[7] = ele[2][1]; |
| 138 |
m[8] = ele[2][2]; |
| 139 |
} |
| 140 |
|
| 141 |
//! Calculates the inverse of a matrix. |
| 142 |
matrix3x3 inverse(void) const throw(OBError); |
| 143 |
|
| 144 |
//! Calculates the transpose of a matrix. |
| 145 |
matrix3x3 transpose(void) const; |
| 146 |
|
| 147 |
//! generates a matrix for a random rotation |
| 148 |
void randomRotation(OBRandom &rnd); |
| 149 |
|
| 150 |
//! returns the determinant of the matrix |
| 151 |
double determinant() const; |
| 152 |
|
| 153 |
//! Checks if a matrix is symmetric |
| 154 |
bool isSymmetric(void) const; |
| 155 |
|
| 156 |
//! Checks if a matrix is orthogonal |
| 157 |
/*! This method checks if a matrix describes an orthogonal |
| 158 |
transformation, i.e. if all column vectors are normalized and |
| 159 |
are mutually orthogonal. An orthogonal transformation is a |
| 160 |
transformation the preserves length and angle. |
| 161 |
|
| 162 |
The check is performed using the method isUnitMatrix() to |
| 163 |
check if |
| 164 |
\code |
| 165 |
*this * transpose() |
| 166 |
\endcode |
| 167 |
is a unit matrix. The criterion is therefore numerically quite |
| 168 |
tight. */ |
| 169 |
bool isOrthogonal(void) const |
| 170 |
{ |
| 171 |
return (*this * transpose()).isUnitMatrix(); |
| 172 |
}; |
| 173 |
|
| 174 |
//! Checks if a matrix is diagonal |
| 175 |
bool isDiagonal(void) const; |
| 176 |
|
| 177 |
//! Checks if a matrix is the unit matrix |
| 178 |
bool isUnitMatrix(void) const; |
| 179 |
|
| 180 |
//! access function |
| 181 |
/*! \warning row or column are not in the range 0..2, random |
| 182 |
results are returned, and your program may even |
| 183 |
segfault. (Stefan Kebekus) |
| 184 |
|
| 185 |
\todo Replace this method with a more fool-proof version. |
| 186 |
*/ |
| 187 |
double Get(int row,int column) const |
| 188 |
{ |
| 189 |
if (row >= 0 && row <= 2 && column >= 0 && column <= 2) |
| 190 |
return(ele[row][column]); |
| 191 |
else |
| 192 |
return 0.0f; |
| 193 |
} |
| 194 |
|
| 195 |
//! access function |
| 196 |
/*! \warning if row or column are not in the range 0..2, random |
| 197 |
variables are overwritten, and your program may |
| 198 |
segfault. (Stefan Kebekus) |
| 199 |
|
| 200 |
\todo Replace this method with a more fool-proof version. |
| 201 |
*/ |
| 202 |
void Set(int row,int column, double v) |
| 203 |
{ |
| 204 |
if (row >= 0 && row <= 2 && column >= 0 && column <= 2) |
| 205 |
ele[row][column]= v; |
| 206 |
} |
| 207 |
|
| 208 |
//! access function |
| 209 |
/*! \warning If column is not in the range 0..2, the vector |
| 210 |
remains unchanged and an exception is thrown. */ |
| 211 |
void SetColumn(int column, const vector3 &v) throw(OBError); |
| 212 |
|
| 213 |
//! access function |
| 214 |
/*! \warning If column is not in the range 0..2, the vector |
| 215 |
remains unchanged and an exception is thrown. */ |
| 216 |
void SetRow(int row, const vector3 &v) throw(OBError); |
| 217 |
|
| 218 |
//! access function |
| 219 |
/*! \warning If col is not in the range 0..2, an exception is |
| 220 |
thrown. */ |
| 221 |
vector3 GetColumn(unsigned int col) const throw(OBError); |
| 222 |
|
| 223 |
//! access function |
| 224 |
/*! \warning If row is not in the range 0..2, an exception is |
| 225 |
thrown. */ |
| 226 |
vector3 GetRow(unsigned int row) const throw(OBError); |
| 227 |
|
| 228 |
|
| 229 |
//! divides all entries of the matrix by a scalar c |
| 230 |
matrix3x3 &operator/=(const double &c); |
| 231 |
|
| 232 |
void SetupRotMat(double,double,double); |
| 233 |
|
| 234 |
//! calculates a matrix that represents reflection on a plane |
| 235 |
void PlaneReflection(const vector3 &norm); |
| 236 |
|
| 237 |
//! calculates a rotation matrix |
| 238 |
void RotAboutAxisByAngle(const vector3 &axis, const double angle); |
| 239 |
|
| 240 |
void FillOrth(double,double,double,double,double,double); |
| 241 |
|
| 242 |
//! find the eigenvalues and -vectors of a symmetric matrix |
| 243 |
matrix3x3 findEigenvectorsIfSymmetric(vector3 &eigenvals) const throw(OBError); |
| 244 |
|
| 245 |
//! matrix-vector multiplication |
| 246 |
friend OBAPI vector3 operator *(const matrix3x3 &,const vector3 &); |
| 247 |
|
| 248 |
//! matrix-matrix multiplication |
| 249 |
friend OBAPI matrix3x3 operator *(const matrix3x3 &,const matrix3x3 &); |
| 250 |
|
| 251 |
friend OBAPI std::ostream& operator<< ( std::ostream&, const matrix3x3 & ) ; |
| 252 |
|
| 253 |
//! eigenvalue calculation |
| 254 |
static void jacobi(unsigned int n, double *a, double *d, double *v); |
| 255 |
}; |
| 256 |
|
| 257 |
OBAPI vector3 center_coords(double*,int); |
| 258 |
} |
| 259 |
|
| 260 |
#endif // OB_MATRIX3x3_H |
| 261 |
|
| 262 |
//! \file matrix3x3.h |
| 263 |
//! \brief Handle 3D Rotation matrix. |