| 1 |
/********************************************************************** |
| 2 |
obutil.cpp - Various utility methods. |
| 3 |
|
| 4 |
Copyright (C) 1998-2001 by OpenEye Scientific Software, Inc. |
| 5 |
Some portions Copyright (C) 2001-2005 by Geoffrey R. Hutchison |
| 6 |
|
| 7 |
This file is part of the Open Babel project. |
| 8 |
For more information, see <http://openbabel.sourceforge.net/> |
| 9 |
|
| 10 |
This program is free software; you can redistribute it and/or modify |
| 11 |
it under the terms of the GNU General Public License as published by |
| 12 |
the Free Software Foundation version 2 of the License. |
| 13 |
|
| 14 |
This program is distributed in the hope that it will be useful, |
| 15 |
but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 17 |
GNU General Public License for more details. |
| 18 |
***********************************************************************/ |
| 19 |
|
| 20 |
#include "config.h" |
| 21 |
#include "matrix3x3.hpp" |
| 22 |
#include "vector3.hpp" |
| 23 |
#include "mol.hpp" |
| 24 |
#include "obutil.hpp" |
| 25 |
|
| 26 |
#if HAVE_CONIO_H |
| 27 |
#include <conio.h> |
| 28 |
#endif |
| 29 |
|
| 30 |
using namespace std; |
| 31 |
namespace OpenBabel |
| 32 |
{ |
| 33 |
|
| 34 |
/*! \class OBStopwatch |
| 35 |
\brief Stopwatch class used for timing length of execution |
| 36 |
|
| 37 |
The OBStopwatch class makes timing the execution of blocks of |
| 38 |
code to microsecond accuracy very simple. The class effectively |
| 39 |
has two functions, Start() and Elapsed(). The usage of the |
| 40 |
OBStopwatch class is demonstrated by the following code: |
| 41 |
\code |
| 42 |
OBStopwatch sw; |
| 43 |
sw.Start(); |
| 44 |
//insert code here |
| 45 |
cout << "Elapsed time = " << sw.Elapsed() << endl; |
| 46 |
\endcode |
| 47 |
*/ |
| 48 |
|
| 49 |
//! Deprecated: use the OBMessageHandler class instead |
| 50 |
//! \deprecated Throw an error through the OpenBabel::OBMessageHandler class |
| 51 |
OBAPI void ThrowError(char *str) |
| 52 |
{ |
| 53 |
obErrorLog.ThrowError("", str, obInfo); |
| 54 |
} |
| 55 |
|
| 56 |
//! Deprecated: use the OBMessageHandler class instead |
| 57 |
//! \deprecated Throw an error through the OpenBabel::OBMessageHandler class |
| 58 |
OBAPI void ThrowError(std::string &str) |
| 59 |
{ |
| 60 |
obErrorLog.ThrowError("", str, obInfo); |
| 61 |
} |
| 62 |
|
| 63 |
// Comparison function (for sorting ints) returns a < b |
| 64 |
OBAPI bool OBCompareInt(const int &a,const int &b) |
| 65 |
{ |
| 66 |
return(a<b); |
| 67 |
} |
| 68 |
|
| 69 |
// Comparison function (for sorting unsigned ints) returns a < b |
| 70 |
OBAPI bool OBCompareUnsigned(const unsigned int &a,const unsigned int &b) |
| 71 |
{ |
| 72 |
return(a<b); |
| 73 |
} |
| 74 |
|
| 75 |
// Comparison for doubles: returns a < (b + epsilon) |
| 76 |
OBAPI bool IsNear(const double &a, const double &b, const double epsilon) |
| 77 |
{ |
| 78 |
return (fabs(a - b) < epsilon); |
| 79 |
} |
| 80 |
|
| 81 |
// Comparison for doubles: returns a < (0.0 + epsilon) |
| 82 |
OBAPI bool IsNearZero(const double &a, const double epsilon) |
| 83 |
{ |
| 84 |
return (fabs(a) < epsilon); |
| 85 |
} |
| 86 |
|
| 87 |
//! Utility function: replace the last extension in string &src with new extension char *ext. |
| 88 |
OBAPI string NewExtension(string &src,char *ext) |
| 89 |
{ |
| 90 |
unsigned int pos = (unsigned int)src.find_last_of("."); |
| 91 |
string dst; |
| 92 |
|
| 93 |
if (pos != string::npos) |
| 94 |
dst = src.substr(0,pos+1); |
| 95 |
else |
| 96 |
{ |
| 97 |
dst = src; |
| 98 |
dst += "."; |
| 99 |
} |
| 100 |
|
| 101 |
dst += ext; |
| 102 |
return(dst); |
| 103 |
} |
| 104 |
|
| 105 |
//! Return the geometric centroid to an array of coordinates in double* format |
| 106 |
//! and center the coordinates to the origin. Operates on the first "size" |
| 107 |
//! coordinates in the array. |
| 108 |
OBAPI vector3 center_coords(double *c, unsigned int size) |
| 109 |
{ |
| 110 |
if (size == 0) |
| 111 |
{ |
| 112 |
vector3 v(0.0f, 0.0f, 0.0f); |
| 113 |
return(v); |
| 114 |
} |
| 115 |
unsigned int i; |
| 116 |
double x=0,y=0,z=0; |
| 117 |
for (i = 0;i < size;i++) |
| 118 |
{ |
| 119 |
x += c[i*3]; |
| 120 |
y += c[i*3+1]; |
| 121 |
z += c[i*3+2]; |
| 122 |
} |
| 123 |
x /= (double) size; |
| 124 |
y /= (double) size; |
| 125 |
z /= (double) size; |
| 126 |
for (i = 0;i < size;i++) |
| 127 |
{ |
| 128 |
c[i*3] -= x; |
| 129 |
c[i*3+1] -= y; |
| 130 |
c[i*3+2] -= z; |
| 131 |
} |
| 132 |
vector3 v(x,y,z); |
| 133 |
return(v); |
| 134 |
} |
| 135 |
|
| 136 |
//! Rotates the coordinate set *c by the transformation matrix m[3][3] |
| 137 |
//! Operates on the first "size" coordinates in the array. |
| 138 |
OBAPI void rotate_coords(double *c,double m[3][3],unsigned int size) |
| 139 |
{ |
| 140 |
double x,y,z; |
| 141 |
for (unsigned int i = 0;i < size;i++) |
| 142 |
{ |
| 143 |
x = c[i*3]*m[0][0] + c[i*3+1]*m[0][1] + c[i*3+2]*m[0][2]; |
| 144 |
y = c[i*3]*m[1][0] + c[i*3+1]*m[1][1] + c[i*3+2]*m[1][2]; |
| 145 |
z = c[i*3]*m[2][0] + c[i*3+1]*m[2][1] + c[i*3+2]*m[2][2]; |
| 146 |
c[i*3] = x; |
| 147 |
c[i*3+1] = y; |
| 148 |
c[i*3+2] = z; |
| 149 |
} |
| 150 |
} |
| 151 |
|
| 152 |
//! Calculate the RMS deviation between the first N coordinates of *r and *f |
| 153 |
OBAPI double calc_rms(double *r,double *f, unsigned int N) |
| 154 |
{ |
| 155 |
if (N == 0) |
| 156 |
return 0.0f; // no RMS deviation between two empty sets |
| 157 |
|
| 158 |
double d2=0.0; |
| 159 |
for (unsigned int i = 0;i < N;i++) |
| 160 |
{ |
| 161 |
d2 += SQUARE(r[i*3] - f[i*3]) + |
| 162 |
SQUARE(r[i*3+1] - f[i*3+1]) + |
| 163 |
SQUARE(r[i*3+2] - f[i*3+2]); |
| 164 |
} |
| 165 |
|
| 166 |
d2 /= (double) N; |
| 167 |
return(sqrt(d2)); |
| 168 |
} |
| 169 |
|
| 170 |
//! Rotate the coordinates of 'atoms' |
| 171 |
//! such that tor == ang - atoms in 'tor' should be ordered such |
| 172 |
//! that the 3rd atom is the pivot around which atoms rotate |
| 173 |
OBAPI void SetRotorToAngle(double *c,vector<int> &tor,double ang,vector<int> &atoms) |
| 174 |
{ |
| 175 |
double v1x,v1y,v1z,v2x,v2y,v2z,v3x,v3y,v3z; |
| 176 |
double c1x,c1y,c1z,c2x,c2y,c2z,c3x,c3y,c3z; |
| 177 |
double c1mag,c2mag,radang,costheta,m[9]; |
| 178 |
double x,y,z,mag,rotang,sn,cs,t,tx,ty,tz; |
| 179 |
|
| 180 |
// |
| 181 |
//calculate the torsion angle |
| 182 |
// |
| 183 |
v1x = c[tor[0]] - c[tor[1]]; |
| 184 |
v2x = c[tor[1]] - c[tor[2]]; |
| 185 |
v1y = c[tor[0]+1] - c[tor[1]+1]; |
| 186 |
v2y = c[tor[1]+1] - c[tor[2]+1]; |
| 187 |
v1z = c[tor[0]+2] - c[tor[1]+2]; |
| 188 |
v2z = c[tor[1]+2] - c[tor[2]+2]; |
| 189 |
v3x = c[tor[2]] - c[tor[3]]; |
| 190 |
v3y = c[tor[2]+1] - c[tor[3]+1]; |
| 191 |
v3z = c[tor[2]+2] - c[tor[3]+2]; |
| 192 |
|
| 193 |
c1x = v1y*v2z - v1z*v2y; |
| 194 |
c2x = v2y*v3z - v2z*v3y; |
| 195 |
c1y = -v1x*v2z + v1z*v2x; |
| 196 |
c2y = -v2x*v3z + v2z*v3x; |
| 197 |
c1z = v1x*v2y - v1y*v2x; |
| 198 |
c2z = v2x*v3y - v2y*v3x; |
| 199 |
c3x = c1y*c2z - c1z*c2y; |
| 200 |
c3y = -c1x*c2z + c1z*c2x; |
| 201 |
c3z = c1x*c2y - c1y*c2x; |
| 202 |
|
| 203 |
c1mag = SQUARE(c1x)+SQUARE(c1y)+SQUARE(c1z); |
| 204 |
c2mag = SQUARE(c2x)+SQUARE(c2y)+SQUARE(c2z); |
| 205 |
if (c1mag*c2mag < 0.01) |
| 206 |
costheta = 1.0; //avoid div by zero error |
| 207 |
else |
| 208 |
costheta = (c1x*c2x + c1y*c2y + c1z*c2z)/(sqrt(c1mag*c2mag)); |
| 209 |
|
| 210 |
if (costheta < -0.999999) |
| 211 |
costheta = -0.999999; |
| 212 |
if (costheta > 0.999999) |
| 213 |
costheta = 0.999999; |
| 214 |
|
| 215 |
if ((v2x*c3x + v2y*c3y + v2z*c3z) > 0.0) |
| 216 |
radang = -acos(costheta); |
| 217 |
else |
| 218 |
radang = acos(costheta); |
| 219 |
|
| 220 |
// |
| 221 |
// now we have the torsion angle (radang) - set up the rot matrix |
| 222 |
// |
| 223 |
|
| 224 |
//find the difference between current and requested |
| 225 |
rotang = ang - radang; |
| 226 |
|
| 227 |
sn = sin(rotang); |
| 228 |
cs = cos(rotang); |
| 229 |
t = 1 - cs; |
| 230 |
//normalize the rotation vector |
| 231 |
mag = sqrt(SQUARE(v2x)+SQUARE(v2y)+SQUARE(v2z)); |
| 232 |
x = v2x/mag; |
| 233 |
y = v2y/mag; |
| 234 |
z = v2z/mag; |
| 235 |
|
| 236 |
//set up the rotation matrix |
| 237 |
m[0]= t*x*x + cs; |
| 238 |
m[1] = t*x*y + sn*z; |
| 239 |
m[2] = t*x*z - sn*y; |
| 240 |
m[3] = t*x*y - sn*z; |
| 241 |
m[4] = t*y*y + cs; |
| 242 |
m[5] = t*y*z + sn*x; |
| 243 |
m[6] = t*x*z + sn*y; |
| 244 |
m[7] = t*y*z - sn*x; |
| 245 |
m[8] = t*z*z + cs; |
| 246 |
|
| 247 |
// |
| 248 |
//now the matrix is set - time to rotate the atoms |
| 249 |
// |
| 250 |
tx = c[tor[1]]; |
| 251 |
ty = c[tor[1]+1]; |
| 252 |
tz = c[tor[1]+2]; |
| 253 |
vector<int>::iterator i; |
| 254 |
int j; |
| 255 |
for (i = atoms.begin();i != atoms.end();i++) |
| 256 |
{ |
| 257 |
j = *i; |
| 258 |
c[j] -= tx; |
| 259 |
c[j+1] -= ty; |
| 260 |
c[j+2]-= tz; |
| 261 |
x = c[j]*m[0] + c[j+1]*m[1] + c[j+2]*m[2]; |
| 262 |
y = c[j]*m[3] + c[j+1]*m[4] + c[j+2]*m[5]; |
| 263 |
z = c[j]*m[6] + c[j+1]*m[7] + c[j+2]*m[8]; |
| 264 |
c[j] = x; |
| 265 |
c[j+1] = y; |
| 266 |
c[j+2] = z; |
| 267 |
c[j] += tx; |
| 268 |
c[j+1] += ty; |
| 269 |
c[j+2] += tz; |
| 270 |
} |
| 271 |
} |
| 272 |
|
| 273 |
//! Safely open the supplied filename and return an ifstream, throwing an error |
| 274 |
//! to the default OBMessageHandler error log if it fails. |
| 275 |
OBAPI bool SafeOpen(ifstream &fs,char *filename) |
| 276 |
{ |
| 277 |
#ifdef WIN32 |
| 278 |
string s = filename; |
| 279 |
if (s.find(".bin") != string::npos) |
| 280 |
fs.open(filename,ios::binary); |
| 281 |
else |
| 282 |
#endif |
| 283 |
|
| 284 |
fs.open(filename); |
| 285 |
|
| 286 |
if (!fs) |
| 287 |
{ |
| 288 |
string error = "Unable to open file \'"; |
| 289 |
error += filename; |
| 290 |
error += "\' in read mode"; |
| 291 |
obErrorLog.ThrowError(__func__, error, obError); |
| 292 |
return(false); |
| 293 |
} |
| 294 |
|
| 295 |
return(true); |
| 296 |
} |
| 297 |
|
| 298 |
|
| 299 |
//! Safely open the supplied filename and return an ofstream, throwing an error |
| 300 |
//! to the default OBMessageHandler error log if it fails. |
| 301 |
OBAPI bool SafeOpen(ofstream &fs,char *filename) |
| 302 |
{ |
| 303 |
#ifdef WIN32 |
| 304 |
string s = filename; |
| 305 |
if (s.find(".bin") != string::npos) |
| 306 |
fs.open(filename,ios::binary); |
| 307 |
else |
| 308 |
#endif |
| 309 |
|
| 310 |
fs.open(filename); |
| 311 |
|
| 312 |
if (!fs) |
| 313 |
{ |
| 314 |
string error = "Unable to open file \'"; |
| 315 |
error += filename; |
| 316 |
error += "\' in write mode"; |
| 317 |
obErrorLog.ThrowError(__func__, error, obError); |
| 318 |
return(false); |
| 319 |
} |
| 320 |
|
| 321 |
return(true); |
| 322 |
} |
| 323 |
|
| 324 |
//! Safely open the supplied filename and return an ifstream, throwing an error |
| 325 |
//! to the default OBMessageHandler error log if it fails. |
| 326 |
OBAPI bool SafeOpen(ifstream &fs,string &filename) |
| 327 |
{ |
| 328 |
return(SafeOpen(fs,(char*)filename.c_str())); |
| 329 |
} |
| 330 |
|
| 331 |
//! Safely open the supplied filename and return an ofstream, throwing an error |
| 332 |
//! to the default OBMessageHandler error log if it fails. |
| 333 |
OBAPI bool SafeOpen(ofstream &fs,string &filename) |
| 334 |
{ |
| 335 |
return(SafeOpen(fs,(char*)filename.c_str())); |
| 336 |
} |
| 337 |
|
| 338 |
//! Shift the supplied string to uppercase |
| 339 |
OBAPI void ToUpper(std::string &s) |
| 340 |
{ |
| 341 |
if (s.empty()) |
| 342 |
return; |
| 343 |
unsigned int i; |
| 344 |
for (i = 0;i < s.size();i++) |
| 345 |
if (isalpha(s[i]) && !isdigit(s[i])) |
| 346 |
s[i] = toupper(s[i]); |
| 347 |
} |
| 348 |
|
| 349 |
//! Shift the supplied char* to uppercase |
| 350 |
OBAPI void ToUpper(char *cptr) |
| 351 |
{ |
| 352 |
char *c; |
| 353 |
for (c = cptr;*c != '\0';c++) |
| 354 |
if (isalpha(*c) && !isdigit(*c)) |
| 355 |
*c = toupper(*c); |
| 356 |
} |
| 357 |
|
| 358 |
//! Shift the supplied string to lowercase |
| 359 |
OBAPI void ToLower(std::string &s) |
| 360 |
{ |
| 361 |
if (s.empty()) |
| 362 |
return; |
| 363 |
unsigned int i; |
| 364 |
for (i = 0;i < s.size();i++) |
| 365 |
if (isalpha(s[i]) && !isdigit(s[i])) |
| 366 |
s[i] = tolower(s[i]); |
| 367 |
} |
| 368 |
|
| 369 |
//! Shift the supplied char* to lowercase |
| 370 |
OBAPI void ToLower(char *cptr) |
| 371 |
{ |
| 372 |
char *c; |
| 373 |
for (c = cptr;*c != '\0';c++) |
| 374 |
if (isalpha(*c) && !isdigit(*c)) |
| 375 |
*c = tolower(*c); |
| 376 |
} |
| 377 |
|
| 378 |
//! "Clean" the supplied atom type, shifting the first character to uppercase, |
| 379 |
//! the second character (if it's a letter) to lowercase, and terminating with a NULL |
| 380 |
//! to strip off any trailing characters |
| 381 |
OBAPI void CleanAtomType(char *id) |
| 382 |
{ |
| 383 |
id[0] = toupper(id[0]); |
| 384 |
if (isalpha(id[1]) == 0) |
| 385 |
id[1] = '\0'; |
| 386 |
else |
| 387 |
{ |
| 388 |
id[1] = tolower(id[1]); |
| 389 |
id[2] = '\0'; |
| 390 |
} |
| 391 |
} |
| 392 |
|
| 393 |
//! Transform the supplied vector<OBInternalCoord*> into cartesian and update |
| 394 |
//! the OBMol accordingly. |
| 395 |
//! Implements <a href="http://qsar.sourceforge.net/dicts/blue-obelisk/index.xhtml#zmatrixCoordinatesIntoCartesianCoordinates">blue-obelisk:zmatrixCoordinatesIntoCartesianCoordinates</a> |
| 396 |
OBAPI void InternalToCartesian(std::vector<OBInternalCoord*> &vic,OBMol &mol) |
| 397 |
{ |
| 398 |
vector3 n,nn,v1,v2,v3,avec,bvec,cvec; |
| 399 |
double dst = 0.0, ang = 0.0, tor = 0.0; |
| 400 |
OBAtom *atom; |
| 401 |
vector<OBNodeBase*>::iterator i; |
| 402 |
int index; |
| 403 |
|
| 404 |
if (vic.empty()) |
| 405 |
return; |
| 406 |
|
| 407 |
obErrorLog.ThrowError(__func__, |
| 408 |
"Ran OpenBabel::InternalToCartesian", obAuditMsg); |
| 409 |
|
| 410 |
for (atom = mol.BeginAtom(i);atom;atom = mol.NextAtom(i)) |
| 411 |
{ |
| 412 |
index = atom->GetIdx(); |
| 413 |
|
| 414 |
// make sure we always have valid pointers |
| 415 |
if (index >= vic.size() || !vic[index]) |
| 416 |
return; |
| 417 |
|
| 418 |
if (vic[index]->_a) // make sure we have a valid ptr |
| 419 |
{ |
| 420 |
avec = vic[index]->_a->GetVector(); |
| 421 |
dst = vic[index]->_dst; |
| 422 |
} |
| 423 |
else |
| 424 |
{ |
| 425 |
// atom 1 |
| 426 |
atom->SetVector(0.0, 0.0, 0.0); |
| 427 |
continue; |
| 428 |
} |
| 429 |
|
| 430 |
if (vic[index]->_b) |
| 431 |
{ |
| 432 |
bvec = vic[index]->_b->GetVector(); |
| 433 |
ang = vic[index]->_ang * DEG_TO_RAD; |
| 434 |
} |
| 435 |
else |
| 436 |
{ |
| 437 |
// atom 2 |
| 438 |
atom->SetVector(dst, 0.0, 0.0); |
| 439 |
continue; |
| 440 |
} |
| 441 |
|
| 442 |
if (vic[index]->_c) |
| 443 |
{ |
| 444 |
cvec = vic[index]->_c->GetVector(); |
| 445 |
tor = vic[index]->_tor * DEG_TO_RAD; |
| 446 |
} |
| 447 |
else |
| 448 |
{ |
| 449 |
// atom 3 |
| 450 |
cvec = VY; |
| 451 |
tor = 90.0 * DEG_TO_RAD; |
| 452 |
} |
| 453 |
|
| 454 |
v1 = avec - bvec; |
| 455 |
v2 = avec - cvec; |
| 456 |
n = cross(v1,v2); |
| 457 |
nn = cross(v1,n); |
| 458 |
n.normalize(); |
| 459 |
nn.normalize(); |
| 460 |
|
| 461 |
n *= -sin(tor); |
| 462 |
nn *= cos(tor); |
| 463 |
v3 = n + nn; |
| 464 |
v3.normalize(); |
| 465 |
v3 *= dst * sin(ang); |
| 466 |
v1.normalize(); |
| 467 |
v1 *= dst * cos(ang); |
| 468 |
v2 = avec + v3 - v1; |
| 469 |
|
| 470 |
atom->SetVector(v2); |
| 471 |
} |
| 472 |
|
| 473 |
// Delete dummy atoms |
| 474 |
for (atom = mol.BeginAtom(i);atom;atom = mol.NextAtom(i)) |
| 475 |
if (atom->GetAtomicNum() == 0) |
| 476 |
mol.DeleteAtom(atom); |
| 477 |
} |
| 478 |
|
| 479 |
//! Use the supplied OBMol and its Cartesian coordinates to generate |
| 480 |
//! a set of internal (z-matrix) coordinates as supplied in the |
| 481 |
//! vector<OBInternalCoord*> argument. |
| 482 |
//! Implements <a href="http://qsar.sourceforge.net/dicts/blue-obelisk/index.xhtml#cartesianCoordinatesIntoZmatrixCoordinates">blue-obelisk:cartesianCoordinatesIntoZmatrixCoordinates</a>. |
| 483 |
OBAPI void CartesianToInternal(std::vector<OBInternalCoord*> &vic,OBMol &mol) |
| 484 |
{ |
| 485 |
double r,sum; |
| 486 |
OBAtom *atom,*nbr,*ref; |
| 487 |
vector<OBNodeBase*>::iterator i,j,m; |
| 488 |
|
| 489 |
obErrorLog.ThrowError(__func__, |
| 490 |
"Ran OpenBabel::CartesianToInternal", obAuditMsg); |
| 491 |
|
| 492 |
//set reference atoms |
| 493 |
for (atom = mol.BeginAtom(i);atom;atom = mol.NextAtom(i)) |
| 494 |
{ |
| 495 |
if (atom->GetIdx() == 1) |
| 496 |
continue; |
| 497 |
else if (atom->GetIdx() == 2) |
| 498 |
{ |
| 499 |
vic[atom->GetIdx()]->_a = mol.GetAtom(1); |
| 500 |
continue; |
| 501 |
} |
| 502 |
else if (atom->GetIdx() == 3) |
| 503 |
{ |
| 504 |
if( (atom->GetVector()-mol.GetAtom(2)->GetVector()).length_2() |
| 505 |
<(atom->GetVector()-mol.GetAtom(1)->GetVector()).length_2()) |
| 506 |
{ |
| 507 |
vic[atom->GetIdx()]->_a = mol.GetAtom(2); |
| 508 |
vic[atom->GetIdx()]->_b = mol.GetAtom(1); |
| 509 |
} |
| 510 |
else |
| 511 |
{ |
| 512 |
vic[atom->GetIdx()]->_a = mol.GetAtom(1); |
| 513 |
vic[atom->GetIdx()]->_b = mol.GetAtom(2); |
| 514 |
} |
| 515 |
continue; |
| 516 |
} |
| 517 |
sum=1.0E10; |
| 518 |
ref = mol.GetAtom(1); |
| 519 |
for(nbr = mol.BeginAtom(j);nbr && (i != j);nbr = mol.NextAtom(j)) |
| 520 |
{ |
| 521 |
r = (atom->GetVector()-nbr->GetVector()).length_2(); |
| 522 |
if((r < sum) && (vic[nbr->GetIdx()]->_a != nbr) && |
| 523 |
(vic[nbr->GetIdx()]->_b != nbr)) |
| 524 |
{ |
| 525 |
sum = r; |
| 526 |
ref = nbr; |
| 527 |
} |
| 528 |
} |
| 529 |
|
| 530 |
vic[atom->GetIdx()]->_a = ref; |
| 531 |
if (ref->GetIdx() >= 3) |
| 532 |
{ |
| 533 |
vic[atom->GetIdx()]->_b = vic[ref->GetIdx()]->_a; |
| 534 |
vic[atom->GetIdx()]->_c = vic[ref->GetIdx()]->_b; |
| 535 |
} |
| 536 |
else |
| 537 |
{ |
| 538 |
if(ref->GetIdx()== 1) |
| 539 |
{ |
| 540 |
vic[atom->GetIdx()]->_b = mol.GetAtom(2); |
| 541 |
vic[atom->GetIdx()]->_c = mol.GetAtom(3); |
| 542 |
} |
| 543 |
else |
| 544 |
{//ref->GetIdx()== 2 |
| 545 |
vic[atom->GetIdx()]->_b = mol.GetAtom(1); |
| 546 |
vic[atom->GetIdx()]->_c = mol.GetAtom(3); |
| 547 |
} |
| 548 |
} |
| 549 |
} |
| 550 |
|
| 551 |
//fill in geometries |
| 552 |
unsigned int k; |
| 553 |
vector3 v1,v2; |
| 554 |
OBAtom *a,*b,*c; |
| 555 |
for (k = 2;k <= mol.NumAtoms();k++) |
| 556 |
{ |
| 557 |
atom = mol.GetAtom(k); |
| 558 |
a = vic[k]->_a; |
| 559 |
b = vic[k]->_b; |
| 560 |
c = vic[k]->_c; |
| 561 |
if (k == 2) |
| 562 |
{ |
| 563 |
vic[k]->_dst = (atom->GetVector() - a->GetVector()).length(); |
| 564 |
continue; |
| 565 |
} |
| 566 |
|
| 567 |
v1 = atom->GetVector() - a->GetVector(); |
| 568 |
v2 = b->GetVector() - a->GetVector(); |
| 569 |
vic[k]->_dst = v1.length(); |
| 570 |
vic[k]->_ang = vectorAngle(v1,v2); |
| 571 |
|
| 572 |
if (k == 3) |
| 573 |
continue; |
| 574 |
vic[k]->_tor = CalcTorsionAngle(atom->GetVector(), |
| 575 |
a->GetVector(), |
| 576 |
b->GetVector(), |
| 577 |
c->GetVector()); |
| 578 |
} |
| 579 |
|
| 580 |
//check for linear geometries and try to correct if possible |
| 581 |
bool done; |
| 582 |
double ang; |
| 583 |
for (k = 2;k <= mol.NumAtoms();k++) |
| 584 |
{ |
| 585 |
ang = fabs(vic[k]->_ang); |
| 586 |
if (ang > 5.0 && ang < 175.0) |
| 587 |
continue; |
| 588 |
atom = mol.GetAtom(k); |
| 589 |
done = false; |
| 590 |
for (a = mol.BeginAtom(i);a && a->GetIdx() < k && !done;a = mol.NextAtom(i)) |
| 591 |
for (b=mol.BeginAtom(j);b && b->GetIdx()<a->GetIdx() && !done;b = mol.NextAtom(j)) |
| 592 |
{ |
| 593 |
v1 = atom->GetVector() - a->GetVector(); |
| 594 |
v2 = b->GetVector() - a->GetVector(); |
| 595 |
ang = fabs(vectorAngle(v1,v2)); |
| 596 |
if (ang < 5.0 || ang > 175.0) |
| 597 |
continue; |
| 598 |
|
| 599 |
for (c = mol.BeginAtom(m);c && c->GetIdx() < atom->GetIdx();c = mol.NextAtom(m)) |
| 600 |
if (c != atom && c != a && c != b) |
| 601 |
break; |
| 602 |
if (!c) |
| 603 |
continue; |
| 604 |
|
| 605 |
vic[k]->_a = a; |
| 606 |
vic[k]->_b = b; |
| 607 |
vic[k]->_c = c; |
| 608 |
vic[k]->_dst = v1.length(); |
| 609 |
vic[k]->_ang = vectorAngle(v1,v2); |
| 610 |
vic[k]->_tor = CalcTorsionAngle(atom->GetVector(), |
| 611 |
a->GetVector(), |
| 612 |
b->GetVector(), |
| 613 |
c->GetVector()); |
| 614 |
done = true; |
| 615 |
} |
| 616 |
} |
| 617 |
} |
| 618 |
|
| 619 |
OBAPI void qtrfit (double *r,double *f,int size, double u[3][3]) |
| 620 |
{ |
| 621 |
register int i; |
| 622 |
double xxyx, xxyy, xxyz; |
| 623 |
double xyyx, xyyy, xyyz; |
| 624 |
double xzyx, xzyy, xzyz; |
| 625 |
double d[4],q[4]; |
| 626 |
double c[16],v[16]; |
| 627 |
double rx,ry,rz,fx,fy,fz; |
| 628 |
|
| 629 |
/* generate the upper triangle of the quadratic form matrix */ |
| 630 |
|
| 631 |
xxyx = 0.0; |
| 632 |
xxyy = 0.0; |
| 633 |
xxyz = 0.0; |
| 634 |
xyyx = 0.0; |
| 635 |
xyyy = 0.0; |
| 636 |
xyyz = 0.0; |
| 637 |
xzyx = 0.0; |
| 638 |
xzyy = 0.0; |
| 639 |
xzyz = 0.0; |
| 640 |
|
| 641 |
for (i = 0; i < size; i++) |
| 642 |
{ |
| 643 |
rx = r[i*3]; |
| 644 |
ry = r[i*3+1]; |
| 645 |
rz = r[i*3+2]; |
| 646 |
fx = f[i*3]; |
| 647 |
fy = f[i*3+1]; |
| 648 |
fz = f[i*3+2]; |
| 649 |
|
| 650 |
xxyx += fx * rx; |
| 651 |
xxyy += fx * ry; |
| 652 |
xxyz += fx * rz; |
| 653 |
xyyx += fy * rx; |
| 654 |
xyyy += fy * ry; |
| 655 |
xyyz += fy * rz; |
| 656 |
xzyx += fz * rx; |
| 657 |
xzyy += fz * ry; |
| 658 |
xzyz += fz * rz; |
| 659 |
} |
| 660 |
|
| 661 |
c[4*0+0] = xxyx + xyyy + xzyz; |
| 662 |
|
| 663 |
c[4*0+1] = xzyy - xyyz; |
| 664 |
c[4*1+1] = xxyx - xyyy - xzyz; |
| 665 |
|
| 666 |
c[4*0+2] = xxyz - xzyx; |
| 667 |
c[4*1+2] = xxyy + xyyx; |
| 668 |
c[4*2+2] = xyyy - xzyz - xxyx; |
| 669 |
|
| 670 |
c[4*0+3] = xyyx - xxyy; |
| 671 |
c[4*1+3] = xzyx + xxyz; |
| 672 |
c[4*2+3] = xyyz + xzyy; |
| 673 |
c[4*3+3] = xzyz - xxyx - xyyy; |
| 674 |
|
| 675 |
/* diagonalize c */ |
| 676 |
|
| 677 |
matrix3x3::jacobi(4, c, d, v); |
| 678 |
|
| 679 |
/* extract the desired quaternion */ |
| 680 |
|
| 681 |
q[0] = v[4*0+3]; |
| 682 |
q[1] = v[4*1+3]; |
| 683 |
q[2] = v[4*2+3]; |
| 684 |
q[3] = v[4*3+3]; |
| 685 |
|
| 686 |
/* generate the rotation matrix */ |
| 687 |
|
| 688 |
u[0][0] = q[0]*q[0] + q[1]*q[1] - q[2]*q[2] - q[3]*q[3]; |
| 689 |
u[1][0] = 2.0 * (q[1] * q[2] - q[0] * q[3]); |
| 690 |
u[2][0] = 2.0 * (q[1] * q[3] + q[0] * q[2]); |
| 691 |
|
| 692 |
u[0][1] = 2.0 * (q[2] * q[1] + q[0] * q[3]); |
| 693 |
u[1][1] = q[0]*q[0] - q[1]*q[1] + q[2]*q[2] - q[3]*q[3]; |
| 694 |
u[2][1] = 2.0 * (q[2] * q[3] - q[0] * q[1]); |
| 695 |
|
| 696 |
u[0][2] = 2.0 * (q[3] * q[1] - q[0] * q[2]); |
| 697 |
u[1][2] = 2.0 * (q[3] * q[2] + q[0] * q[1]); |
| 698 |
u[2][2] = q[0]*q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3]; |
| 699 |
} |
| 700 |
|
| 701 |
|
| 702 |
|
| 703 |
static double Roots[4]; |
| 704 |
|
| 705 |
#define ApproxZero 1E-7 |
| 706 |
#define IsZero(x) ((double)fabs(x)<ApproxZero) |
| 707 |
#ifndef PI |
| 708 |
#define PI 3.14159265358979323846226433 |
| 709 |
#endif |
| 710 |
#define OneThird (1.0/3.0) |
| 711 |
#define FourThirdsPI (4.0*PI/3.0) |
| 712 |
#define TwoThirdsPI (2.0*PI/3.0) |
| 713 |
|
| 714 |
#ifdef OLD_RMAT |
| 715 |
|
| 716 |
/*FUNCTION */ |
| 717 |
/* recieves: the co-efficients for a general |
| 718 |
* equation of degree one. |
| 719 |
* Ax + B = 0 !! |
| 720 |
*/ |
| 721 |
OBAPI static int SolveLinear(double A,double B) |
| 722 |
{ |
| 723 |
if( IsZero(A) ) |
| 724 |
return( 0 ); |
| 725 |
Roots[0] = -B/A; |
| 726 |
return( 1 ); |
| 727 |
} |
| 728 |
|
| 729 |
/*FUNCTION */ |
| 730 |
/* recieves: the co-efficients for a general |
| 731 |
* linear equation of degree two. |
| 732 |
* Ax^2 + Bx + C = 0 !! |
| 733 |
*/ |
| 734 |
OBAPI static int SolveQuadratic(double A,double B,double C) |
| 735 |
{ |
| 736 |
register double Descr, Temp, TwoA; |
| 737 |
|
| 738 |
if( IsZero(A) ) |
| 739 |
return( SolveLinear(B,C) ); |
| 740 |
|
| 741 |
TwoA = A+A; |
| 742 |
Temp = TwoA*C; |
| 743 |
Descr = B*B - (Temp+Temp); |
| 744 |
if( Descr<0.0 ) |
| 745 |
return( 0 ); |
| 746 |
|
| 747 |
if( Descr>0.0 ) |
| 748 |
{ |
| 749 |
Descr = sqrt(Descr); |
| 750 |
#ifdef ORIG |
| 751 |
|
| 752 |
Roots[0] = (-B-Descr)/TwoA; |
| 753 |
Roots[1] = (-B+Descr)/TwoA; |
| 754 |
#else |
| 755 |
/* W. Press, B. Flannery, S. Teukolsky and W. Vetterling, |
| 756 |
* "Quadratic and Cubic Equations", Numerical Recipes in C, |
| 757 |
* Chapter 5, pp. 156-157, 1989. |
| 758 |
*/ |
| 759 |
Temp = (B<0.0)? -0.5*(B-Descr) : -0.5*(B+Descr); |
| 760 |
Roots[0] = Temp/A; |
| 761 |
Roots[1] = C/Temp; |
| 762 |
#endif |
| 763 |
|
| 764 |
return( 2 ); |
| 765 |
} |
| 766 |
Roots[0] = -B/TwoA; |
| 767 |
return( 1 ); |
| 768 |
} |
| 769 |
|
| 770 |
/*FUNCTION */ |
| 771 |
/* task: to return the cube root of the |
| 772 |
* given value taking into account |
| 773 |
* that it may be negative. |
| 774 |
*/ |
| 775 |
OBAPI static double CubeRoot(double X) |
| 776 |
{ |
| 777 |
if( X>=0.0 ) |
| 778 |
{ |
| 779 |
return pow( X, OneThird ); |
| 780 |
} |
| 781 |
else |
| 782 |
return -pow( -X, OneThird ); |
| 783 |
} |
| 784 |
|
| 785 |
OBAPI static int SolveCubic(double A,double B,double C,double D) |
| 786 |
{ |
| 787 |
register double TwoA, ThreeA, BOver3A; |
| 788 |
register double Temp, POver3, QOver2; |
| 789 |
register double Desc, Rho, Psi; |
| 790 |
|
| 791 |
|
| 792 |
if( IsZero(A) ) |
| 793 |
{ |
| 794 |
return( SolveQuadratic(B,C,D) ); |
| 795 |
} |
| 796 |
|
| 797 |
TwoA = A+A; |
| 798 |
ThreeA = TwoA+A; |
| 799 |
BOver3A = B/ThreeA; |
| 800 |
QOver2 = ((TwoA*BOver3A*BOver3A-C)*BOver3A+D)/TwoA; |
| 801 |
POver3 = (C-B*BOver3A)/ThreeA; |
| 802 |
|
| 803 |
|
| 804 |
Rho = POver3*POver3*POver3; |
| 805 |
Desc = QOver2*QOver2 + Rho; |
| 806 |
|
| 807 |
if( Desc<=0.0 ) |
| 808 |
{ |
| 809 |
Rho = sqrt( -Rho ); |
| 810 |
Psi = OneThird*acos(-QOver2/Rho); |
| 811 |
Temp = CubeRoot( Rho ); |
| 812 |
Temp = Temp+Temp; |
| 813 |
|
| 814 |
Roots[0] = Temp*cos( Psi )-BOver3A; |
| 815 |
Roots[1] = Temp*cos( Psi+TwoThirdsPI )-BOver3A; |
| 816 |
Roots[2] = Temp*cos( Psi+FourThirdsPI )-BOver3A; |
| 817 |
return( 3 ); |
| 818 |
} |
| 819 |
|
| 820 |
if( Desc> 0.0 ) |
| 821 |
{ |
| 822 |
Temp = CubeRoot( -QOver2 ); |
| 823 |
Roots[0] = Temp+Temp-BOver3A; |
| 824 |
Roots[1] = -Temp-BOver3A; |
| 825 |
return( 2 ); |
| 826 |
} |
| 827 |
|
| 828 |
Desc = sqrt( Desc ); |
| 829 |
Roots[0] = CubeRoot(Desc-QOver2)-CubeRoot(Desc+QOver2) - BOver3A; |
| 830 |
|
| 831 |
return( 1 ); |
| 832 |
} |
| 833 |
#endif |
| 834 |
|
| 835 |
|
| 836 |
#define MAX_SWEEPS 50 |
| 837 |
|
| 838 |
OBAPI void ob_make_rmat(double a[3][3],double rmat[9]) |
| 839 |
{ |
| 840 |
double onorm, dnorm; |
| 841 |
double b, dma, q, t, c, s,d[3]; |
| 842 |
double atemp, vtemp, dtemp,v[3][3]; |
| 843 |
double r1[3],r2[3],v1[3],v2[3],v3[3]; |
| 844 |
int i, j, k, l; |
| 845 |
|
| 846 |
memset((char*)d,'\0',sizeof(double)*3); |
| 847 |
|
| 848 |
for (j = 0; j < 3; j++) |
| 849 |
{ |
| 850 |
for (i = 0; i < 3; i++) |
| 851 |
v[i][j] = 0.0; |
| 852 |
|
| 853 |
v[j][j] = 1.0; |
| 854 |
d[j] = a[j][j]; |
| 855 |
} |
| 856 |
|
| 857 |
for (l = 1; l <= MAX_SWEEPS; l++) |
| 858 |
{ |
| 859 |
dnorm = 0.0; |
| 860 |
onorm = 0.0; |
| 861 |
for (j = 0; j < 3; j++) |
| 862 |
{ |
| 863 |
dnorm = dnorm + (double)fabs(d[j]); |
| 864 |
for (i = 0; i <= j - 1; i++) |
| 865 |
{ |
| 866 |
onorm = onorm + (double)fabs(a[i][j]); |
| 867 |
} |
| 868 |
} |
| 869 |
|
| 870 |
if((onorm/dnorm) <= 1.0e-12) |
| 871 |
goto Exit_now; |
| 872 |
for (j = 1; j < 3; j++) |
| 873 |
{ |
| 874 |
for (i = 0; i <= j - 1; i++) |
| 875 |
{ |
| 876 |
b = a[i][j]; |
| 877 |
if(fabs(b) > 0.0) |
| 878 |
{ |
| 879 |
dma = d[j] - d[i]; |
| 880 |
if((fabs(dma) + fabs(b)) <= fabs(dma)) |
| 881 |
t = b / dma; |
| 882 |
else |
| 883 |
{ |
| 884 |
q = 0.5 * dma / b; |
| 885 |
t = 1.0/((double)fabs(q) + (double)sqrt(1.0+q*q)); |
| 886 |
if(q < 0.0) |
| 887 |
t = -t; |
| 888 |
} |
| 889 |
c = 1.0/(double)sqrt(t * t + 1.0); |
| 890 |
s = t * c; |
| 891 |
a[i][j] = 0.0; |
| 892 |
for (k = 0; k <= i-1; k++) |
| 893 |
{ |
| 894 |
atemp = c * a[k][i] - s * a[k][j]; |
| 895 |
a[k][j] = s * a[k][i] + c * a[k][j]; |
| 896 |
a[k][i] = atemp; |
| 897 |
} |
| 898 |
for (k = i+1; k <= j-1; k++) |
| 899 |
{ |
| 900 |
atemp = c * a[i][k] - s * a[k][j]; |
| 901 |
a[k][j] = s * a[i][k] + c * a[k][j]; |
| 902 |
a[i][k] = atemp; |
| 903 |
} |
| 904 |
for (k = j+1; k < 3; k++) |
| 905 |
{ |
| 906 |
atemp = c * a[i][k] - s * a[j][k]; |
| 907 |
a[j][k] = s * a[i][k] + c * a[j][k]; |
| 908 |
a[i][k] = atemp; |
| 909 |
} |
| 910 |
for (k = 0; k < 3; k++) |
| 911 |
{ |
| 912 |
vtemp = c * v[k][i] - s * v[k][j]; |
| 913 |
v[k][j] = s * v[k][i] + c * v[k][j]; |
| 914 |
v[k][i] = vtemp; |
| 915 |
} |
| 916 |
dtemp = c*c*d[i] + s*s*d[j] - 2.0*c*s*b; |
| 917 |
d[j] = s*s*d[i] + c*c*d[j] + 2.0*c*s*b; |
| 918 |
d[i] = dtemp; |
| 919 |
} /* end if */ |
| 920 |
} /* end for i */ |
| 921 |
} /* end for j */ |
| 922 |
} /* end for l */ |
| 923 |
|
| 924 |
Exit_now: |
| 925 |
|
| 926 |
/* max_sweeps = l;*/ |
| 927 |
|
| 928 |
for (j = 0; j < 3-1; j++) |
| 929 |
{ |
| 930 |
k = j; |
| 931 |
dtemp = d[k]; |
| 932 |
for (i = j+1; i < 3; i++) |
| 933 |
if(d[i] < dtemp) |
| 934 |
{ |
| 935 |
k = i; |
| 936 |
dtemp = d[k]; |
| 937 |
} |
| 938 |
|
| 939 |
if(k > j) |
| 940 |
{ |
| 941 |
d[k] = d[j]; |
| 942 |
d[j] = dtemp; |
| 943 |
for (i = 0; i < 3 ; i++) |
| 944 |
{ |
| 945 |
dtemp = v[i][k]; |
| 946 |
v[i][k] = v[i][j]; |
| 947 |
v[i][j] = dtemp; |
| 948 |
} |
| 949 |
} |
| 950 |
} |
| 951 |
|
| 952 |
r1[0] = v[0][0]; |
| 953 |
r1[1] = v[1][0]; |
| 954 |
r1[2] = v[2][0]; |
| 955 |
r2[0] = v[0][1]; |
| 956 |
r2[1] = v[1][1]; |
| 957 |
r2[2] = v[2][1]; |
| 958 |
|
| 959 |
v3[0] = r1[1]*r2[2] - r1[2]*r2[1]; |
| 960 |
v3[1] = -r1[0]*r2[2] + r1[2]*r2[0]; |
| 961 |
v3[2] = r1[0]*r2[1] - r1[1]*r2[0]; |
| 962 |
s = (double)sqrt(v3[0]*v3[0] + v3[1]*v3[1] + v3[2]*v3[2]); |
| 963 |
v3[0] /= s; |
| 964 |
v3[0] /= s; |
| 965 |
v3[0] /= s; |
| 966 |
|
| 967 |
v2[0] = v3[1]*r1[2] - v3[2]*r1[1]; |
| 968 |
v2[1] = -v3[0]*r1[2] + v3[2]*r1[0]; |
| 969 |
v2[2] = v3[0]*r1[1] - v3[1]*r1[0]; |
| 970 |
s = (double)sqrt(v2[0]*v2[0] + v2[1]*v2[1] + v2[2]*v2[2]); |
| 971 |
v2[0] /= s; |
| 972 |
v2[0] /= s; |
| 973 |
v2[0] /= s; |
| 974 |
|
| 975 |
v1[0] = v2[1]*v3[2] - v2[2]*v3[1]; |
| 976 |
v1[1] = -v2[0]*v3[2] + v2[2]*v3[0]; |
| 977 |
v1[2] = v2[0]*v3[1] - v2[1]*v3[0]; |
| 978 |
s = (double)sqrt(v1[0]*v1[0] + v1[1]*v1[1] + v1[2]*v1[2]); |
| 979 |
v1[0] /= s; |
| 980 |
v1[0] /= s; |
| 981 |
v1[0] /= s; |
| 982 |
|
| 983 |
rmat[0] = v1[0]; |
| 984 |
rmat[1] = v1[1]; |
| 985 |
rmat[2] = v1[2]; |
| 986 |
rmat[3] = v2[0]; |
| 987 |
rmat[4] = v2[1]; |
| 988 |
rmat[5] = v2[2]; |
| 989 |
rmat[6] = v3[0]; |
| 990 |
rmat[7] = v3[1]; |
| 991 |
rmat[8] = v3[2]; |
| 992 |
} |
| 993 |
|
| 994 |
static int get_roots_3_3(double mat[3][3], double roots[3]) |
| 995 |
{ |
| 996 |
double rmat[9]; |
| 997 |
|
| 998 |
ob_make_rmat(mat,rmat); |
| 999 |
|
| 1000 |
mat[0][0]=rmat[0]; |
| 1001 |
mat[0][1]=rmat[3]; |
| 1002 |
mat[0][2]=rmat[6]; |
| 1003 |
mat[1][0]=rmat[1]; |
| 1004 |
mat[1][1]=rmat[4]; |
| 1005 |
mat[1][2]=rmat[7]; |
| 1006 |
mat[2][0]=rmat[2]; |
| 1007 |
mat[2][1]=rmat[5]; |
| 1008 |
mat[2][2]=rmat[8]; |
| 1009 |
|
| 1010 |
roots[0]=(double)Roots[0]; |
| 1011 |
roots[1]=(double)Roots[1]; |
| 1012 |
roots[2]=(double)Roots[2]; |
| 1013 |
|
| 1014 |
return 1; |
| 1015 |
} |
| 1016 |
|
| 1017 |
OBAPI double superimpose(double *r,double *f,int size) |
| 1018 |
{ |
| 1019 |
int i,j; |
| 1020 |
double x,y,z,d2; |
| 1021 |
double mat[3][3],rmat[3][3],mat2[3][3],roots[3]; |
| 1022 |
|
| 1023 |
/* make inertial cross tensor */ |
| 1024 |
for(i=0;i<3;i++) |
| 1025 |
for(j=0;j<3;j++) |
| 1026 |
mat[i][j]=0.0; |
| 1027 |
|
| 1028 |
for(i=0;i < size;i++) |
| 1029 |
{ |
| 1030 |
mat[0][0]+=r[3*i] *f[3*i]; |
| 1031 |
mat[1][0]+=r[3*i+1]*f[3*i]; |
| 1032 |
mat[2][0]+=r[3*i+2]*f[3*i]; |
| 1033 |
mat[0][1]+=r[3*i] *f[3*i+1]; |
| 1034 |
mat[1][1]+=r[3*i+1]*f[3*i+1]; |
| 1035 |
mat[2][1]+=r[3*i+2]*f[3*i+1]; |
| 1036 |
mat[0][2]+=r[3*i] *f[3*i+2]; |
| 1037 |
mat[1][2]+=r[3*i+1]*f[3*i+2]; |
| 1038 |
mat[2][2]+=r[3*i+2]*f[3*i+2]; |
| 1039 |
} |
| 1040 |
|
| 1041 |
d2=mat[0][0]*(mat[1][1]*mat[2][2]-mat[1][2]*mat[2][1]) |
| 1042 |
-mat[0][1]*(mat[1][0]*mat[2][2]-mat[1][2]*mat[2][0]) |
| 1043 |
+mat[0][2]*(mat[1][0]*mat[2][1]-mat[1][1]*mat[2][0]); |
| 1044 |
|
| 1045 |
|
| 1046 |
/* square matrix= ((mat transpose) * mat) */ |
| 1047 |
for(i=0;i<3;i++) |
| 1048 |
for(j=0;j<3;j++) |
| 1049 |
{ |
| 1050 |
x=mat[0][i]*mat[0][j]+mat[1][i]*mat[1][j]+mat[2][i]*mat[2][j]; |
| 1051 |
mat2[i][j]=mat[i][j]; |
| 1052 |
rmat[i][j]=x; |
| 1053 |
} |
| 1054 |
get_roots_3_3(rmat,roots); |
| 1055 |
|
| 1056 |
roots[0]=(roots[0]<0.0001) ? 0.0: (roots[0]); |
| 1057 |
roots[1]=(roots[1]<0.0001) ? 0.0: (roots[1]); |
| 1058 |
roots[2]=(roots[2]<0.0001) ? 0.0: (roots[2]); |
| 1059 |
|
| 1060 |
/* make sqrt of rmat, store in mat*/ |
| 1061 |
|
| 1062 |
roots[0]=roots[0]<0.0001? 0.0: 1.0/(double)sqrt(roots[0]); |
| 1063 |
roots[1]=roots[1]<0.0001? 0.0: 1.0/(double)sqrt(roots[1]); |
| 1064 |
roots[2]=roots[2]<0.0001? 0.0: 1.0/(double)sqrt(roots[2]); |
| 1065 |
|
| 1066 |
if(d2<0.0) |
| 1067 |
{ |
| 1068 |
if( (roots[0]>=roots[1]) && (roots[0]>=roots[2]) ) |
| 1069 |
roots[0]*=-1.0; |
| 1070 |
if( (roots[1]>roots[0]) && (roots[1]>=roots[2]) ) |
| 1071 |
roots[1]*=-1.0; |
| 1072 |
if( (roots[2]>roots[1]) && (roots[2]>roots[0]) ) |
| 1073 |
roots[2]*=-1.0; |
| 1074 |
} |
| 1075 |
|
| 1076 |
for(i=0;i<3;i++) |
| 1077 |
for(j=0;j<3;j++) |
| 1078 |
mat[i][j]=roots[0]*rmat[i][0]*rmat[j][0]+ |
| 1079 |
roots[1]*rmat[i][1]*rmat[j][1]+ |
| 1080 |
roots[2]*rmat[i][2]*rmat[j][2]; |
| 1081 |
|
| 1082 |
/* and multiply into original inertial cross matrix, mat2 */ |
| 1083 |
for(i=0;i<3;i++) |
| 1084 |
for(j=0;j<3;j++) |
| 1085 |
rmat[i][j]=mat[0][j]*mat2[i][0]+ |
| 1086 |
mat[1][j]*mat2[i][1]+ |
| 1087 |
mat[2][j]*mat2[i][2]; |
| 1088 |
|
| 1089 |
/* rotate all coordinates */ |
| 1090 |
d2 = 0.0; |
| 1091 |
for(i=0;i<size;i++) |
| 1092 |
{ |
| 1093 |
x=f[3*i]*rmat[0][0]+f[3*i+1]*rmat[0][1]+f[3*i+2]*rmat[0][2]; |
| 1094 |
y=f[3*i]*rmat[1][0]+f[3*i+1]*rmat[1][1]+f[3*i+2]*rmat[1][2]; |
| 1095 |
z=f[3*i]*rmat[2][0]+f[3*i+1]*rmat[2][1]+f[3*i+2]*rmat[2][2]; |
| 1096 |
f[3*i ]=x; |
| 1097 |
f[3*i+1]=y; |
| 1098 |
f[3*i+2]=z; |
| 1099 |
|
| 1100 |
x = r[i*3] - f[i*3]; |
| 1101 |
y = r[i*3+1] - f[i*3+1]; |
| 1102 |
z = r[i*3+2] - f[i*3+2]; |
| 1103 |
d2 += x*x+y*y+z*z; |
| 1104 |
} |
| 1105 |
|
| 1106 |
d2 /= (double) size; |
| 1107 |
|
| 1108 |
return((double)sqrt(d2)); |
| 1109 |
} |
| 1110 |
|
| 1111 |
OBAPI void get_rmat(double *rvec,double *r,double *f,int size) |
| 1112 |
{ |
| 1113 |
int i,j; |
| 1114 |
double x,d2; |
| 1115 |
double mat[3][3],rmat[3][3],mat2[3][3],roots[3]; |
| 1116 |
|
| 1117 |
/* make inertial cross tensor */ |
| 1118 |
for(i=0;i<3;i++) |
| 1119 |
for(j=0;j<3;j++) |
| 1120 |
mat[i][j]=0.0; |
| 1121 |
|
| 1122 |
for(i=0;i < size;i++) |
| 1123 |
{ |
| 1124 |
mat[0][0]+=r[3*i] *f[3*i]; |
| 1125 |
mat[1][0]+=r[3*i+1]*f[3*i]; |
| 1126 |
mat[2][0]+=r[3*i+2]*f[3*i]; |
| 1127 |
mat[0][1]+=r[3*i] *f[3*i+1]; |
| 1128 |
mat[1][1]+=r[3*i+1]*f[3*i+1]; |
| 1129 |
mat[2][1]+=r[3*i+2]*f[3*i+1]; |
| 1130 |
mat[0][2]+=r[3*i] *f[3*i+2]; |
| 1131 |
mat[1][2]+=r[3*i+1]*f[3*i+2]; |
| 1132 |
mat[2][2]+=r[3*i+2]*f[3*i+2]; |
| 1133 |
} |
| 1134 |
|
| 1135 |
d2=mat[0][0]*(mat[1][1]*mat[2][2]-mat[1][2]*mat[2][1]) |
| 1136 |
-mat[0][1]*(mat[1][0]*mat[2][2]-mat[1][2]*mat[2][0]) |
| 1137 |
+mat[0][2]*(mat[1][0]*mat[2][1]-mat[1][1]*mat[2][0]); |
| 1138 |
|
| 1139 |
/* square matrix= ((mat transpose) * mat) */ |
| 1140 |
for(i=0;i<3;i++) |
| 1141 |
for(j=0;j<3;j++) |
| 1142 |
{ |
| 1143 |
x=mat[0][i]*mat[0][j]+mat[1][i]*mat[1][j]+mat[2][i]*mat[2][j]; |
| 1144 |
mat2[i][j]=mat[i][j]; |
| 1145 |
rmat[i][j]=x; |
| 1146 |
} |
| 1147 |
get_roots_3_3(rmat,roots); |
| 1148 |
|
| 1149 |
roots[0]=(roots[0]<0.0001) ? 0.0: (roots[0]); |
| 1150 |
roots[1]=(roots[1]<0.0001) ? 0.0: (roots[1]); |
| 1151 |
roots[2]=(roots[2]<0.0001) ? 0.0: (roots[2]); |
| 1152 |
|
| 1153 |
/* make sqrt of rmat, store in mat*/ |
| 1154 |
|
| 1155 |
roots[0]=(roots[0]<0.0001) ? 0.0: 1.0/(double)sqrt(roots[0]); |
| 1156 |
roots[1]=(roots[1]<0.0001) ? 0.0: 1.0/(double)sqrt(roots[1]); |
| 1157 |
roots[2]=(roots[2]<0.0001) ? 0.0: 1.0/(double)sqrt(roots[2]); |
| 1158 |
|
| 1159 |
if(d2<0.0) |
| 1160 |
{ |
| 1161 |
if( (roots[0]>=roots[1]) && (roots[0]>=roots[2]) ) |
| 1162 |
roots[0]*=-1.0; |
| 1163 |
if( (roots[1]>roots[0]) && (roots[1]>=roots[2]) ) |
| 1164 |
roots[1]*=-1.0; |
| 1165 |
if( (roots[2]>roots[1]) && (roots[2]>roots[0]) ) |
| 1166 |
roots[2]*=-1.0; |
| 1167 |
} |
| 1168 |
|
| 1169 |
for(i=0;i<3;i++) |
| 1170 |
for(j=0;j<3;j++) |
| 1171 |
mat[i][j]=roots[0]*rmat[i][0]*rmat[j][0]+ |
| 1172 |
roots[1]*rmat[i][1]*rmat[j][1]+ |
| 1173 |
roots[2]*rmat[i][2]*rmat[j][2]; |
| 1174 |
|
| 1175 |
/* and multiply into original inertial cross matrix, mat2 */ |
| 1176 |
for(i=0;i<3;i++) |
| 1177 |
for(j=0;j<3;j++) |
| 1178 |
rmat[i][j]=mat[0][j]*mat2[i][0]+ |
| 1179 |
mat[1][j]*mat2[i][1]+ |
| 1180 |
mat[2][j]*mat2[i][2]; |
| 1181 |
|
| 1182 |
rvec[0] = rmat[0][0]; |
| 1183 |
rvec[1] = rmat[0][1]; |
| 1184 |
rvec[2] = rmat[0][2]; |
| 1185 |
rvec[3] = rmat[1][0]; |
| 1186 |
rvec[4] = rmat[1][1]; |
| 1187 |
rvec[5] = rmat[1][2]; |
| 1188 |
rvec[6] = rmat[2][0]; |
| 1189 |
rvec[7] = rmat[2][1]; |
| 1190 |
rvec[8] = rmat[2][2]; |
| 1191 |
} |
| 1192 |
|
| 1193 |
} // end namespace OpenBabel |
| 1194 |
|
| 1195 |
//! \file obutil.cpp |
| 1196 |
//! \brief Various utility methods. |