| 1 |
/********************************************************************** |
| 2 |
vector3.h - Handle 3D coordinates. |
| 3 |
|
| 4 |
Copyright (C) 1998-2001 by OpenEye Scientific Software, Inc. |
| 5 |
Some portions Copyright (C) 2001-2005 by Geoffrey R. Hutchison |
| 6 |
|
| 7 |
This file is part of the Open Babel project. |
| 8 |
For more information, see <http://openbabel.sourceforge.net/> |
| 9 |
|
| 10 |
This program is free software; you can redistribute it and/or modify |
| 11 |
it under the terms of the GNU General Public License as published by |
| 12 |
the Free Software Foundation version 2 of the License. |
| 13 |
|
| 14 |
This program is distributed in the hope that it will be useful, |
| 15 |
but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 17 |
GNU General Public License for more details. |
| 18 |
***********************************************************************/ |
| 19 |
|
| 20 |
#ifndef OB_VECTOR_H |
| 21 |
#define OB_VECTOR_H |
| 22 |
|
| 23 |
#if HAVE_IOSTREAM |
| 24 |
#include <iostream> |
| 25 |
#elif HAVE_IOSTREAM_H |
| 26 |
#include <iostream.h> |
| 27 |
#endif |
| 28 |
|
| 29 |
#if HAVE_FSTREAM |
| 30 |
#include <fstream> |
| 31 |
#elif HAVE_FSTREAM_H |
| 32 |
#include <fstream.h> |
| 33 |
#endif |
| 34 |
|
| 35 |
#include <math.h> |
| 36 |
#include "obutil.hpp" |
| 37 |
|
| 38 |
#ifndef PI |
| 39 |
#define PI 3.1415926535897932384626433 |
| 40 |
#endif |
| 41 |
|
| 42 |
#ifndef RAD_TO_DEG |
| 43 |
#define RAD_TO_DEG 180.0/PI |
| 44 |
#endif |
| 45 |
|
| 46 |
#ifndef DEG_TO_RAD |
| 47 |
#define DEG_TO_RAD PI/180.0 |
| 48 |
#endif |
| 49 |
|
| 50 |
namespace OpenBabel |
| 51 |
{ |
| 52 |
|
| 53 |
class matrix3x3; |
| 54 |
|
| 55 |
// class introduction in vector3.cpp |
| 56 |
class OBAPI vector3 |
| 57 |
{ |
| 58 |
private : |
| 59 |
double _vx, _vy, _vz ; |
| 60 |
|
| 61 |
public : |
| 62 |
//! Constructor |
| 63 |
vector3 (const double x=0.0, const double y=0.0, const double z=0.0) |
| 64 |
{ |
| 65 |
_vx = x; |
| 66 |
_vy = y; |
| 67 |
_vz = z; |
| 68 |
}; |
| 69 |
//! Copy Constructor |
| 70 |
vector3 (const vector3& v) |
| 71 |
{ |
| 72 |
_vx = v._vx; |
| 73 |
_vy = v._vy; |
| 74 |
_vz = v._vz; |
| 75 |
}; |
| 76 |
|
| 77 |
//! set x,y and z-component of a vector |
| 78 |
void Set(const double x, const double y, const double z) |
| 79 |
{ |
| 80 |
_vx = x ; |
| 81 |
_vy = y ; |
| 82 |
_vz = z ; |
| 83 |
}; |
| 84 |
//! set x,y and z-component of a vector from c[0]..c[2] |
| 85 |
void Set(const double *c) |
| 86 |
{ |
| 87 |
_vx = c[0]; |
| 88 |
_vy = c[1]; |
| 89 |
_vz = c[2]; |
| 90 |
} |
| 91 |
//! access function to get the x-coordinate of the vector |
| 92 |
void SetX(const double x) |
| 93 |
{ |
| 94 |
_vx = x; |
| 95 |
}; |
| 96 |
//! access function to get the y-coordinate of the vector |
| 97 |
void SetY(const double y) |
| 98 |
{ |
| 99 |
_vy = y; |
| 100 |
}; |
| 101 |
//! access function to get the z-coordinate of the vector |
| 102 |
void SetZ(const double z) |
| 103 |
{ |
| 104 |
_vz = z; |
| 105 |
}; |
| 106 |
//! set c[0]..c[2] to the components of the vector |
| 107 |
void Get(double *c) |
| 108 |
{ |
| 109 |
c[0]=_vx; |
| 110 |
c[1]=_vy; |
| 111 |
c[2]=_vz; |
| 112 |
}; |
| 113 |
//! access function |
| 114 |
double& operator[] ( unsigned int i); |
| 115 |
|
| 116 |
//! assignment |
| 117 |
vector3& operator= ( const vector3& v) |
| 118 |
{ |
| 119 |
_vx = v._vx; |
| 120 |
_vy = v._vy; |
| 121 |
_vz = v._vz; |
| 122 |
return *this; |
| 123 |
}; |
| 124 |
|
| 125 |
//! prints a representation of the vector as a row vector of the form "<0.1,1,2>" |
| 126 |
friend OBAPI std::ostream& operator<< ( std::ostream&, const vector3& ) ; |
| 127 |
|
| 128 |
// Comparison |
| 129 |
friend OBAPI int operator== ( const vector3&, const vector3& ) ; |
| 130 |
friend OBAPI int operator!= ( const vector3&, const vector3& ) ; |
| 131 |
|
| 132 |
// Sum, Difference, Scalar Product |
| 133 |
//! vector addition |
| 134 |
friend OBAPI vector3 operator+ ( const vector3& v1, const vector3& v2) |
| 135 |
{ |
| 136 |
return vector3(v1._vx+v2._vx, v1._vy+v2._vy, v1._vz+v2._vz); |
| 137 |
}; |
| 138 |
//! vector subtraction |
| 139 |
friend OBAPI vector3 operator- ( const vector3& v1, const vector3& v2) |
| 140 |
{ |
| 141 |
return vector3(v1._vx-v2._vx, v1._vy-v2._vy, v1._vz-v2._vz); |
| 142 |
}; |
| 143 |
//! unary minus |
| 144 |
friend OBAPI vector3 operator- ( const vector3& v) |
| 145 |
{ |
| 146 |
return vector3(-v._vx, -v._vy, -v._vz); |
| 147 |
}; |
| 148 |
//! multiplication with a scalar |
| 149 |
friend OBAPI vector3 operator* ( const double& c, const vector3& v) |
| 150 |
{ |
| 151 |
return vector3( c*v._vx, c*v._vy, c*v._vz); |
| 152 |
}; |
| 153 |
//! multiplication with a scalar |
| 154 |
friend OBAPI vector3 operator* ( const vector3& v, const double& c) |
| 155 |
{ |
| 156 |
return vector3( c*v._vx, c*v._vy, c*v._vz); |
| 157 |
}; |
| 158 |
//! division by a scalar |
| 159 |
friend OBAPI vector3 operator/ ( const vector3& v, const double& c) |
| 160 |
{ |
| 161 |
return vector3( v._vx/c, v._vy/c, v._vz/c); |
| 162 |
}; |
| 163 |
// @removed@ misleading operation |
| 164 |
// friend vector3 operator* ( const vector3 &,const vector3 &); |
| 165 |
|
| 166 |
//vector and matrix ops |
| 167 |
// @removed@ misleading operation; matrix multiplication is not commutitative |
| 168 |
// friend vector3 operator *(const vector3 &v,const matrix3x3 &m); |
| 169 |
|
| 170 |
//! multiplication of matrix and vector |
| 171 |
friend OBAPI vector3 operator *(const matrix3x3 &m,const vector3 &v); |
| 172 |
|
| 173 |
// Immediate Sum, Difference, Scalar Product |
| 174 |
vector3& operator+= ( const vector3& v) |
| 175 |
{ |
| 176 |
_vx += v._vx; |
| 177 |
_vy += v._vy; |
| 178 |
_vz += v._vz; |
| 179 |
return *this; |
| 180 |
}; |
| 181 |
vector3& operator-= ( const vector3& v) |
| 182 |
{ |
| 183 |
_vx -= v._vx; |
| 184 |
_vy -= v._vy; |
| 185 |
_vz -= v._vz; |
| 186 |
return *this; |
| 187 |
}; |
| 188 |
vector3& operator+= ( const double* f) |
| 189 |
{ |
| 190 |
_vx += f[0]; |
| 191 |
_vy += f[1]; |
| 192 |
_vz += f[2]; |
| 193 |
return *this; |
| 194 |
}; |
| 195 |
vector3& operator-= ( const double* f) |
| 196 |
{ |
| 197 |
_vx -= f[0]; |
| 198 |
_vy -= f[1]; |
| 199 |
_vz -= f[2]; |
| 200 |
return *this; |
| 201 |
}; |
| 202 |
vector3& operator*= ( const double& c) |
| 203 |
{ |
| 204 |
_vx *= c; |
| 205 |
_vy *= c; |
| 206 |
_vz *= c; |
| 207 |
return *this; |
| 208 |
}; |
| 209 |
vector3& operator/= ( const double& c) |
| 210 |
{ |
| 211 |
_vx /= c; |
| 212 |
_vy /= c; |
| 213 |
_vz /= c; |
| 214 |
return *this; |
| 215 |
}; |
| 216 |
//! multiplication of matrix and vector |
| 217 |
vector3& operator*= ( const matrix3x3 &); |
| 218 |
|
| 219 |
//! create a random unit vector |
| 220 |
void randomUnitVector(OBRandom *oeRand= 0L); |
| 221 |
|
| 222 |
// Member Functions |
| 223 |
|
| 224 |
//! dot product of two vectors |
| 225 |
friend OBAPI double dot ( const vector3&, const vector3& ) ; |
| 226 |
|
| 227 |
//! cross product of two vectors |
| 228 |
friend OBAPI vector3 cross ( const vector3&, const vector3& ) ; |
| 229 |
|
| 230 |
//! calculate angle between vectors |
| 231 |
friend OBAPI double vectorAngle ( const vector3& v1, const vector3& v2 ); |
| 232 |
|
| 233 |
//! calculate the torsion angle between vectors |
| 234 |
friend OBAPI double CalcTorsionAngle(const vector3 &a, const vector3 &b, |
| 235 |
const vector3 &c, const vector3 &d); |
| 236 |
|
| 237 |
//! scales a vector to give it length one. |
| 238 |
vector3& normalize () ; |
| 239 |
|
| 240 |
//! vector length |
| 241 |
double length () const |
| 242 |
{ |
| 243 |
return sqrt(_vx*_vx + _vy*_vy + _vz*_vz); |
| 244 |
}; |
| 245 |
//! vector length squared |
| 246 |
double length_2 () const |
| 247 |
{ |
| 248 |
return _vx*_vx + _vy*_vy + _vz*_vz; |
| 249 |
}; |
| 250 |
//! access function to get the x-coordinate of the vector |
| 251 |
double x () const |
| 252 |
{ |
| 253 |
return _vx ; |
| 254 |
} ; |
| 255 |
//! access function to get the y-coordinate of the vector |
| 256 |
double y () const |
| 257 |
{ |
| 258 |
return _vy ; |
| 259 |
} ; |
| 260 |
//! access function to get the z-coordinate of the vector |
| 261 |
double z () const |
| 262 |
{ |
| 263 |
return _vz ; |
| 264 |
} ; |
| 265 |
|
| 266 |
//! square to the distance between *this and vv |
| 267 |
/*! equivalent to length_2(*this-vv) |
| 268 |
*/ |
| 269 |
inline double distSq(const vector3 &vv) const |
| 270 |
{ |
| 271 |
return( (_vx - vv.x() )*(_vx - vv.x() ) + |
| 272 |
(_vy - vv.y() )*(_vy - vv.y() ) + |
| 273 |
(_vz - vv.z() )*(_vz - vv.z() ) ); |
| 274 |
} |
| 275 |
|
| 276 |
//! creates a vector of length one, orthogonal to *this. |
| 277 |
void createOrthoVector(vector3 &v) const; |
| 278 |
|
| 279 |
} ; |
| 280 |
|
| 281 |
//! \brief Calculate the distance of point a to the plane determined by b,c,d |
| 282 |
OBAPI double Point2Plane(vector3 a, vector3 b, vector3 c, vector3 d); |
| 283 |
|
| 284 |
// The global constant vector3s |
| 285 |
extern OBAPI const vector3 VZero; |
| 286 |
extern OBAPI const vector3 VX; |
| 287 |
extern OBAPI const vector3 VY; |
| 288 |
extern OBAPI const vector3 VZ; |
| 289 |
|
| 290 |
#ifndef SWIG |
| 291 |
OBAPI vector3 center_coords(double*,int); |
| 292 |
#endif |
| 293 |
} |
| 294 |
|
| 295 |
#endif // OB_VECTOR_H |
| 296 |
|
| 297 |
//! \file |
| 298 |
//! \brief Handle 3D coordinates. |