| 1 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ | 
| 2 |  | 
| 3 | /* | 
| 4 | Copyright (C) 2001, 2002, 2003 Nicolas Di Césaré | 
| 5 |  | 
| 6 | This file is part of QuantLib, a free-software/open-source library | 
| 7 | for financial quantitative analysts and developers - http://quantlib.org/ | 
| 8 |  | 
| 9 | QuantLib is free software: you can redistribute it and/or modify it | 
| 10 | under the terms of the QuantLib license.  You should have received a | 
| 11 | copy of the license along with this program; if not, please email | 
| 12 | <quantlib-dev@lists.sf.net>. The license is also available online at | 
| 13 | <http://quantlib.org/license.shtml>. | 
| 14 |  | 
| 15 | This program is distributed in the hope that it will be useful, but WITHOUT | 
| 16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
| 17 | FOR A PARTICULAR PURPOSE.  See the license for more details. | 
| 18 | */ | 
| 19 |  | 
| 20 | #include "optimization/Armijo.hpp" | 
| 21 | #include "optimization/Method.hpp" | 
| 22 | #include "optimization/Problem.hpp" | 
| 23 |  | 
| 24 | namespace QuantLib { | 
| 25 |  | 
| 26 | RealType ArmijoLineSearch::operator()(Problem& P, | 
| 27 | EndCriteria::Type& ecType, | 
| 28 | const EndCriteria& endCriteria, | 
| 29 | const RealType t_ini) | 
| 30 | { | 
| 31 | //OptimizationMethod& method = P.method(); | 
| 32 | Constraint& constraint = P.constraint(); | 
| 33 | succeed_=true; | 
| 34 | bool maxIter = false; | 
| 35 | RealType t = t_ini; | 
| 36 |  | 
| 37 |  | 
| 38 | RealType q0 = P.functionValue(); | 
| 39 | RealType qp0 = P.gradientNormValue(); | 
| 40 |  | 
| 41 | qt_ = q0; | 
| 42 | qpt_ = (gradient_.empty()) ? qp0 : -P.DotProduct(gradient_,searchDirection_); | 
| 43 |  | 
| 44 | // Initialize gradient | 
| 45 | gradient_ = DynamicVector<RealType>(P.currentValue().size()); | 
| 46 | // Compute new point | 
| 47 | xtd_ = P.currentValue(); | 
| 48 | t = update(xtd_, searchDirection_, t, constraint); | 
| 49 | // Compute function value at the new point | 
| 50 | qt_ = P.value (xtd_); | 
| 51 |  | 
| 52 | // Enter in the loop if the criterion is not satisfied | 
| 53 | if ((qt_-q0) > -alpha_*t*qpt_) { | 
| 54 | RealType qtold; | 
| 55 | size_t loopNumber = 0; | 
| 56 | do { | 
| 57 | loopNumber++; | 
| 58 | // Decrease step | 
| 59 | t *= beta_; | 
| 60 | // Store old value of the function | 
| 61 | qtold = qt_; | 
| 62 | // New point value | 
| 63 | xtd_ = P.currentValue(); | 
| 64 | t = update(xtd_, searchDirection_, t, constraint); | 
| 65 |  | 
| 66 | // Compute function value at the new point | 
| 67 | qt_ = P.value (xtd_); | 
| 68 | P.gradient (gradient_, xtd_); | 
| 69 | // and it squared norm | 
| 70 | maxIter = endCriteria.checkMaxIterations(loopNumber, ecType); | 
| 71 | } while ( | 
| 72 | (((qt_ - q0) > (-alpha_ * t * qpt_)) || | 
| 73 | ((qtold - q0) <= (-alpha_ * t * qpt_ / beta_))) && | 
| 74 | (!maxIter)); | 
| 75 | } | 
| 76 |  | 
| 77 | if (maxIter) | 
| 78 | succeed_ = false; | 
| 79 |  | 
| 80 | // Compute new gradient | 
| 81 | P.gradient(gradient_, xtd_); | 
| 82 | // and it squared norm | 
| 83 | qpt_ = P.computeGradientNormValue(gradient_); | 
| 84 | //qpt_ = P.DotProduct(gradient_, gradient_); | 
| 85 |  | 
| 86 | // Return new step value | 
| 87 | return t; | 
| 88 | } | 
| 89 |  | 
| 90 | } |