| 1 | gezelter | 1741 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ | 
| 2 |  |  |  | 
| 3 |  |  | /* | 
| 4 |  |  | Copyright (C) 2009 Frédéric Degraeve | 
| 5 |  |  |  | 
| 6 |  |  | This file is part of QuantLib, a free-software/open-source library | 
| 7 |  |  | for financial quantitative analysts and developers - http://quantlib.org/ | 
| 8 |  |  |  | 
| 9 |  |  | QuantLib is free software: you can redistribute it and/or modify it | 
| 10 |  |  | under the terms of the QuantLib license.  You should have received a | 
| 11 |  |  | copy of the license along with this program; if not, please email | 
| 12 |  |  | <quantlib-dev@lists.sf.net>. The license is also available online at | 
| 13 |  |  | <http://quantlib.org/license.shtml>. | 
| 14 |  |  |  | 
| 15 |  |  | This program is distributed in the hope that it will be useful, but WITHOUT | 
| 16 |  |  | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
| 17 |  |  | FOR A PARTICULAR PURPOSE.  See the license for more details. | 
| 18 |  |  | */ | 
| 19 |  |  |  | 
| 20 |  |  | #include "optimization/BFGS.hpp" | 
| 21 |  |  | #include "optimization/Problem.hpp" | 
| 22 |  |  | #include "optimization/LineSearch.hpp" | 
| 23 |  |  |  | 
| 24 |  |  | namespace QuantLib { | 
| 25 |  |  |  | 
| 26 |  |  | DynamicVector<RealType> BFGS::getUpdatedDirection(const Problem& P, | 
| 27 |  |  | RealType, | 
| 28 |  |  | const DynamicVector<RealType>& oldGradient) { | 
| 29 |  |  | if (inverseHessian_.getNRow() == 0) | 
| 30 |  |  | { | 
| 31 |  |  | // first time in this update, we create needed structures | 
| 32 |  |  | inverseHessian_ = DynamicRectMatrix<RealType>(P.currentValue().size(), | 
| 33 |  |  | P.currentValue().size(), 0.); | 
| 34 |  |  | for (size_t i = 0; i < P.currentValue().size(); ++i) | 
| 35 |  |  | inverseHessian_(i,i) = 1.; | 
| 36 |  |  | } | 
| 37 |  |  |  | 
| 38 |  |  | DynamicVector<RealType> diffGradient; | 
| 39 |  |  | DynamicVector<RealType> diffGradientWithHessianApplied(P.currentValue().size(), 0.); | 
| 40 |  |  |  | 
| 41 |  |  | diffGradient = lineSearch_->lastGradient() - oldGradient; | 
| 42 |  |  | for (size_t i = 0; i < P.currentValue().size(); ++i) | 
| 43 |  |  | for (size_t j = 0; j < P.currentValue().size(); ++j) | 
| 44 |  |  | diffGradientWithHessianApplied[i] += inverseHessian_(i,j) * diffGradient[j]; | 
| 45 |  |  |  | 
| 46 |  |  | double fac, fae, fad; | 
| 47 |  |  | double sumdg, sumxi; | 
| 48 |  |  |  | 
| 49 |  |  | fac = fae = sumdg = sumxi = 0.; | 
| 50 |  |  | for (size_t i = 0; i < P.currentValue().size(); ++i) | 
| 51 |  |  | { | 
| 52 |  |  | fac += diffGradient[i] * lineSearch_->searchDirection()[i]; | 
| 53 |  |  | fae += diffGradient[i] * diffGradientWithHessianApplied[i]; | 
| 54 |  |  | sumdg += std::pow(diffGradient[i], 2.); | 
| 55 |  |  | sumxi += std::pow(lineSearch_->searchDirection()[i], 2.); | 
| 56 |  |  | } | 
| 57 |  |  |  | 
| 58 |  |  | if (fac > std::sqrt(1e-8 * sumdg * sumxi))  // skip update if fac not sufficiently positive | 
| 59 |  |  | { | 
| 60 |  |  | fac = 1.0 / fac; | 
| 61 |  |  | fad = 1.0 / fae; | 
| 62 |  |  |  | 
| 63 |  |  | for (size_t i = 0; i < P.currentValue().size(); ++i) | 
| 64 |  |  | diffGradient[i] = fac * lineSearch_->searchDirection()[i] - fad * diffGradientWithHessianApplied[i]; | 
| 65 |  |  |  | 
| 66 |  |  | for (size_t i = 0; i < P.currentValue().size(); ++i) | 
| 67 |  |  | for (size_t j = 0; j < P.currentValue().size(); ++j) | 
| 68 |  |  | { | 
| 69 |  |  | inverseHessian_(i,j) += fac * lineSearch_->searchDirection()[i] * lineSearch_->searchDirection()[j]; | 
| 70 |  |  | inverseHessian_(i,j) -= fad * diffGradientWithHessianApplied[i] * diffGradientWithHessianApplied[j]; | 
| 71 |  |  | inverseHessian_(i,j) += fae * diffGradient[i] * diffGradient[j]; | 
| 72 |  |  | } | 
| 73 |  |  | } | 
| 74 |  |  | //else | 
| 75 |  |  | //  throw "BFGS: FAC not sufficiently positive"; | 
| 76 |  |  |  | 
| 77 |  |  |  | 
| 78 |  |  | DynamicVector<RealType> direction(P.currentValue().size()); | 
| 79 |  |  | for (size_t i = 0; i < P.currentValue().size(); ++i) | 
| 80 |  |  | { | 
| 81 |  |  | direction[i] = 0.0; | 
| 82 |  |  | for (size_t j = 0; j < P.currentValue().size(); ++j) | 
| 83 |  |  | direction[i] -= inverseHessian_(i,j) * lineSearch_->lastGradient()[j]; | 
| 84 |  |  | } | 
| 85 |  |  |  | 
| 86 |  |  | return direction; | 
| 87 |  |  | } | 
| 88 |  |  |  | 
| 89 |  |  | } |