| 1 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ | 
| 2 |  | 
| 3 | /* | 
| 4 | Copyright (C) 2009 Frédéric Degraeve | 
| 5 |  | 
| 6 | This file is part of QuantLib, a free-software/open-source library | 
| 7 | for financial quantitative analysts and developers - http://quantlib.org/ | 
| 8 |  | 
| 9 | QuantLib is free software: you can redistribute it and/or modify it | 
| 10 | under the terms of the QuantLib license.  You should have received a | 
| 11 | copy of the license along with this program; if not, please email | 
| 12 | <quantlib-dev@lists.sf.net>. The license is also available online at | 
| 13 | <http://quantlib.org/license.shtml>. | 
| 14 |  | 
| 15 | This program is distributed in the hope that it will be useful, but WITHOUT | 
| 16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
| 17 | FOR A PARTICULAR PURPOSE.  See the license for more details. | 
| 18 | */ | 
| 19 |  | 
| 20 | #include "optimization/BFGS.hpp" | 
| 21 | #include "optimization/Problem.hpp" | 
| 22 | #include "optimization/LineSearch.hpp" | 
| 23 |  | 
| 24 | namespace QuantLib { | 
| 25 |  | 
| 26 | DynamicVector<RealType> BFGS::getUpdatedDirection(const Problem& P, | 
| 27 | RealType, | 
| 28 | const DynamicVector<RealType>& oldGradient) { | 
| 29 | if (inverseHessian_.getNRow() == 0) | 
| 30 | { | 
| 31 | // first time in this update, we create needed structures | 
| 32 | inverseHessian_ = DynamicRectMatrix<RealType>(P.currentValue().size(), | 
| 33 | P.currentValue().size(), 0.); | 
| 34 | for (size_t i = 0; i < P.currentValue().size(); ++i) | 
| 35 | inverseHessian_(i,i) = 1.; | 
| 36 | } | 
| 37 |  | 
| 38 | DynamicVector<RealType> diffGradient; | 
| 39 | DynamicVector<RealType> diffGradientWithHessianApplied(P.currentValue().size(), 0.); | 
| 40 |  | 
| 41 | diffGradient = lineSearch_->lastGradient() - oldGradient; | 
| 42 | for (size_t i = 0; i < P.currentValue().size(); ++i) | 
| 43 | for (size_t j = 0; j < P.currentValue().size(); ++j) | 
| 44 | diffGradientWithHessianApplied[i] += inverseHessian_(i,j) * diffGradient[j]; | 
| 45 |  | 
| 46 | double fac, fae, fad; | 
| 47 | double sumdg, sumxi; | 
| 48 |  | 
| 49 | fac = fae = sumdg = sumxi = 0.; | 
| 50 | for (size_t i = 0; i < P.currentValue().size(); ++i) | 
| 51 | { | 
| 52 | fac += diffGradient[i] * lineSearch_->searchDirection()[i]; | 
| 53 | fae += diffGradient[i] * diffGradientWithHessianApplied[i]; | 
| 54 | sumdg += std::pow(diffGradient[i], 2.); | 
| 55 | sumxi += std::pow(lineSearch_->searchDirection()[i], 2.); | 
| 56 | } | 
| 57 |  | 
| 58 | if (fac > std::sqrt(1e-8 * sumdg * sumxi))  // skip update if fac not sufficiently positive | 
| 59 | { | 
| 60 | fac = 1.0 / fac; | 
| 61 | fad = 1.0 / fae; | 
| 62 |  | 
| 63 | for (size_t i = 0; i < P.currentValue().size(); ++i) | 
| 64 | diffGradient[i] = fac * lineSearch_->searchDirection()[i] - fad * diffGradientWithHessianApplied[i]; | 
| 65 |  | 
| 66 | for (size_t i = 0; i < P.currentValue().size(); ++i) | 
| 67 | for (size_t j = 0; j < P.currentValue().size(); ++j) | 
| 68 | { | 
| 69 | inverseHessian_(i,j) += fac * lineSearch_->searchDirection()[i] * lineSearch_->searchDirection()[j]; | 
| 70 | inverseHessian_(i,j) -= fad * diffGradientWithHessianApplied[i] * diffGradientWithHessianApplied[j]; | 
| 71 | inverseHessian_(i,j) += fae * diffGradient[i] * diffGradient[j]; | 
| 72 | } | 
| 73 | } | 
| 74 | //else | 
| 75 | //  throw "BFGS: FAC not sufficiently positive"; | 
| 76 |  | 
| 77 |  | 
| 78 | DynamicVector<RealType> direction(P.currentValue().size()); | 
| 79 | for (size_t i = 0; i < P.currentValue().size(); ++i) | 
| 80 | { | 
| 81 | direction[i] = 0.0; | 
| 82 | for (size_t j = 0; j < P.currentValue().size(); ++j) | 
| 83 | direction[i] -= inverseHessian_(i,j) * lineSearch_->lastGradient()[j]; | 
| 84 | } | 
| 85 |  | 
| 86 | return direction; | 
| 87 | } | 
| 88 |  | 
| 89 | } |