| 1 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ | 
| 2 |  | 
| 3 | /* | 
| 4 | Copyright (C) 2006, 2007 Ferdinando Ametrano | 
| 5 | Copyright (C) 2007 Marco Bianchetti | 
| 6 | Copyright (C) 2001, 2002, 2003 Nicolas Di Césaré | 
| 7 |  | 
| 8 | This file is part of QuantLib, a free-software/open-source library | 
| 9 | for financial quantitative analysts and developers - http://quantlib.org/ | 
| 10 |  | 
| 11 | QuantLib is free software: you can redistribute it and/or modify it | 
| 12 | under the terms of the QuantLib license.  You should have received a | 
| 13 | copy of the license along with this program; if not, please email | 
| 14 | <quantlib-dev@lists.sf.net>. The license is also available online at | 
| 15 | <http://quantlib.org/license.shtml>. | 
| 16 |  | 
| 17 | This program is distributed in the hope that it will be useful, but WITHOUT | 
| 18 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
| 19 | FOR A PARTICULAR PURPOSE.  See the license for more details. | 
| 20 | */ | 
| 21 |  | 
| 22 | #include "optimization/EndCriteria.hpp" | 
| 23 | #include "utils/simError.h" | 
| 24 | #include <cmath> | 
| 25 | #include <cstdio> | 
| 26 |  | 
| 27 | namespace QuantLib { | 
| 28 |  | 
| 29 | EndCriteria::EndCriteria(size_t maxIterations, | 
| 30 | size_t maxStationaryStateIterations, | 
| 31 | RealType rootEpsilon, | 
| 32 | RealType functionEpsilon, | 
| 33 | RealType gradientNormEpsilon) | 
| 34 | : maxIterations_(maxIterations), | 
| 35 | maxStationaryStateIterations_(maxStationaryStateIterations), | 
| 36 | rootEpsilon_(rootEpsilon), | 
| 37 | functionEpsilon_(functionEpsilon), | 
| 38 | gradientNormEpsilon_(gradientNormEpsilon) { | 
| 39 |  | 
| 40 |  | 
| 41 | // replaced the QL_REQUIRE macro with OpenMD's simError calls | 
| 42 | if (maxStationaryStateIterations_ <= 1) { | 
| 43 | sprintf(painCave.errMsg, | 
| 44 | "maxStationaryStateIterations_ ( %lu ) " | 
| 45 | "must be greater than one\n", | 
| 46 | (unsigned long)maxStationaryStateIterations_); | 
| 47 | painCave.isFatal = 1; | 
| 48 | painCave.severity = OPENMD_ERROR; | 
| 49 | simError(); | 
| 50 | } | 
| 51 | if (maxStationaryStateIterations_ > maxIterations_) { | 
| 52 | sprintf(painCave.errMsg, | 
| 53 | "maxStationaryStateIterations_ ( %lu ) " | 
| 54 | "must be less than maxIterations_ ( %lu )\n", | 
| 55 | (unsigned long)maxStationaryStateIterations_, | 
| 56 | (unsigned long)maxIterations_); | 
| 57 | painCave.isFatal = 1; | 
| 58 | painCave.severity = OPENMD_ERROR; | 
| 59 | simError(); | 
| 60 | } | 
| 61 |  | 
| 62 | } | 
| 63 |  | 
| 64 | bool EndCriteria::checkMaxIterations(const size_t iteration, | 
| 65 | EndCriteria::Type& ecType) const{ | 
| 66 | if (iteration < maxIterations_) | 
| 67 | return false; | 
| 68 | ecType = MaxIterations; | 
| 69 | return true; | 
| 70 | } | 
| 71 |  | 
| 72 | bool EndCriteria::checkStationaryPoint(const RealType xOld, | 
| 73 | const RealType xNew, | 
| 74 | size_t& statStateIterations, | 
| 75 | EndCriteria::Type& ecType) const { | 
| 76 | if (std::fabs(xNew-xOld) >= rootEpsilon_) { | 
| 77 | statStateIterations = 0; | 
| 78 | return false; | 
| 79 | } | 
| 80 | ++statStateIterations; | 
| 81 | if (statStateIterations <= maxStationaryStateIterations_) | 
| 82 | return false; | 
| 83 | ecType = StationaryPoint; | 
| 84 | return true; | 
| 85 | } | 
| 86 |  | 
| 87 | bool EndCriteria::checkStationaryFunctionValue( | 
| 88 | const RealType fxOld, | 
| 89 | const RealType fxNew, | 
| 90 | size_t& statStateIterations, | 
| 91 | EndCriteria::Type& ecType) const { | 
| 92 | if (std::fabs(fxNew-fxOld) >= functionEpsilon_) { | 
| 93 | statStateIterations = 0; | 
| 94 | return false; | 
| 95 | } | 
| 96 | ++statStateIterations; | 
| 97 | if (statStateIterations <= maxStationaryStateIterations_) | 
| 98 | return false; | 
| 99 | ecType = StationaryFunctionValue; | 
| 100 | return true; | 
| 101 | } | 
| 102 |  | 
| 103 | bool EndCriteria::checkStationaryFunctionAccuracy( | 
| 104 | const RealType f, | 
| 105 | const bool positiveOptimization, | 
| 106 | EndCriteria::Type& ecType) const { | 
| 107 | if (!positiveOptimization) | 
| 108 | return false; | 
| 109 | if (f >= functionEpsilon_) | 
| 110 | return false; | 
| 111 | ecType = StationaryFunctionAccuracy; | 
| 112 | return true; | 
| 113 | } | 
| 114 |  | 
| 115 | //bool EndCriteria::checkZerGradientNormValue( | 
| 116 | //                                        const RealType gNormOld, | 
| 117 | //                                        const RealType gNormNew, | 
| 118 | //                                        EndCriteria::Type& ecType) const { | 
| 119 | //    if (std::fabs(gNormNew-gNormOld) >= gradientNormEpsilon_) | 
| 120 | //        return false; | 
| 121 | //    ecType = StationaryGradient; | 
| 122 | //    return true; | 
| 123 | //} | 
| 124 |  | 
| 125 | bool EndCriteria::checkZeroGradientNorm(const RealType gradientNorm, | 
| 126 | EndCriteria::Type& ecType) const { | 
| 127 | if (gradientNorm >= gradientNormEpsilon_) | 
| 128 | return false; | 
| 129 | ecType = ZeroGradientNorm; | 
| 130 | return true; | 
| 131 | } | 
| 132 |  | 
| 133 | bool EndCriteria::operator()(const size_t iteration, | 
| 134 | size_t& statStateIterations, | 
| 135 | const bool positiveOptimization, | 
| 136 | const RealType fold, | 
| 137 | const RealType, //normgold, | 
| 138 | const RealType fnew, | 
| 139 | const RealType normgnew, | 
| 140 | EndCriteria::Type& ecType) const { | 
| 141 | return | 
| 142 | checkMaxIterations(iteration, ecType) || | 
| 143 | checkStationaryFunctionValue(fold, fnew, statStateIterations, ecType) || | 
| 144 | checkStationaryFunctionAccuracy(fnew, positiveOptimization, ecType) || | 
| 145 | checkZeroGradientNorm(normgnew, ecType); | 
| 146 | } | 
| 147 |  | 
| 148 | // Inspectors | 
| 149 | size_t EndCriteria::maxIterations() const { | 
| 150 | return maxIterations_; | 
| 151 | } | 
| 152 |  | 
| 153 | size_t EndCriteria::maxStationaryStateIterations() const { | 
| 154 | return maxStationaryStateIterations_; | 
| 155 | } | 
| 156 |  | 
| 157 | RealType EndCriteria::rootEpsilon() const { | 
| 158 | return rootEpsilon_; | 
| 159 | } | 
| 160 |  | 
| 161 | RealType EndCriteria::functionEpsilon() const { | 
| 162 | return functionEpsilon_; | 
| 163 | } | 
| 164 |  | 
| 165 | RealType EndCriteria::gradientNormEpsilon() const { | 
| 166 | return gradientNormEpsilon_; | 
| 167 | } | 
| 168 |  | 
| 169 | std::ostream& operator<<(std::ostream& out, EndCriteria::Type ec) { | 
| 170 | switch (ec) { | 
| 171 | case QuantLib::EndCriteria::None: | 
| 172 | return out << "None"; | 
| 173 | case QuantLib::EndCriteria::MaxIterations: | 
| 174 | return out << "MaxIterations"; | 
| 175 | case QuantLib::EndCriteria::StationaryPoint: | 
| 176 | return out << "StationaryPoint"; | 
| 177 | case QuantLib::EndCriteria::StationaryFunctionValue: | 
| 178 | return out << "StationaryFunctionValue"; | 
| 179 | case QuantLib::EndCriteria::StationaryFunctionAccuracy: | 
| 180 | return out << "StationaryFunctionAccuracy"; | 
| 181 | case QuantLib::EndCriteria::ZeroGradientNorm: | 
| 182 | return out << "ZeroGradientNorm"; | 
| 183 | case QuantLib::EndCriteria::Unknown: | 
| 184 | return out << "Unknown"; | 
| 185 | default: | 
| 186 | sprintf(painCave.errMsg, "unknown EndCriteria::Type ( %d )\n", | 
| 187 | int(ec)); | 
| 188 | painCave.isFatal = 1; | 
| 189 | painCave.severity = OPENMD_ERROR; | 
| 190 | simError(); | 
| 191 | } | 
| 192 | } | 
| 193 |  | 
| 194 | } |