| 1 |
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ |
| 2 |
|
| 3 |
/* |
| 4 |
Copyright (C) 2001, 2002, 2003 Nicolas Di Césaré |
| 5 |
|
| 6 |
This file is part of QuantLib, a free-software/open-source library |
| 7 |
for financial quantitative analysts and developers - http://quantlib.org/ |
| 8 |
|
| 9 |
QuantLib is free software: you can redistribute it and/or modify it |
| 10 |
under the terms of the QuantLib license. You should have received a |
| 11 |
copy of the license along with this program; if not, please email |
| 12 |
<quantlib-dev@lists.sf.net>. The license is also available online at |
| 13 |
<http://quantlib.org/license.shtml>. |
| 14 |
|
| 15 |
This program is distributed in the hope that it will be useful, but WITHOUT |
| 16 |
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| 17 |
FOR A PARTICULAR PURPOSE. See the license for more details. |
| 18 |
*/ |
| 19 |
|
| 20 |
/*! \file ObjectiveFunction.hpp |
| 21 |
\brief Optimization objective function class |
| 22 |
*/ |
| 23 |
|
| 24 |
#ifndef optimization_objectivefunction_h |
| 25 |
#define optimization_objectivefunction_h |
| 26 |
#include "config.h" |
| 27 |
#include "math/DynamicVector.hpp" |
| 28 |
|
| 29 |
using namespace OpenMD; |
| 30 |
namespace QuantLib { |
| 31 |
|
| 32 |
//! Objective function abstract class for optimization problem |
| 33 |
class ObjectiveFunction { |
| 34 |
public: |
| 35 |
virtual ~ObjectiveFunction() {} |
| 36 |
//! method to overload to compute the objective function value in x |
| 37 |
virtual RealType value(const DynamicVector<RealType>& x) = 0; |
| 38 |
|
| 39 |
//! method to overload to compute grad_f, the first derivative of |
| 40 |
// the objective function with respect to x |
| 41 |
virtual void gradient(DynamicVector<RealType>& grad, const DynamicVector<RealType>& x) { |
| 42 |
RealType eps = finiteDifferenceEpsilon(), fp, fm; |
| 43 |
DynamicVector<RealType> xx(x); |
| 44 |
for (size_t i=0; i<x.size(); i++) { |
| 45 |
xx[i] += eps; |
| 46 |
fp = value(xx); |
| 47 |
xx[i] -= 2.0*eps; |
| 48 |
fm = value(xx); |
| 49 |
grad[i] = 0.5*(fp - fm)/eps; |
| 50 |
xx[i] = x[i]; |
| 51 |
} |
| 52 |
} |
| 53 |
|
| 54 |
//! method to overload to compute grad_f, the first derivative |
| 55 |
// of the objective function with respect to x and also the |
| 56 |
// objective function |
| 57 |
virtual RealType valueAndGradient(DynamicVector<RealType>& grad, |
| 58 |
const DynamicVector<RealType>& x) { |
| 59 |
gradient(grad, x); |
| 60 |
return value(x); |
| 61 |
} |
| 62 |
|
| 63 |
//! Default epsilon for finite difference method : |
| 64 |
virtual RealType finiteDifferenceEpsilon() const { return 1e-8; } |
| 65 |
}; |
| 66 |
|
| 67 |
class ParametersTransformation { |
| 68 |
public: |
| 69 |
virtual ~ParametersTransformation() {} |
| 70 |
virtual DynamicVector<RealType> direct(const DynamicVector<RealType>& x) const = 0; |
| 71 |
virtual DynamicVector<RealType> inverse(const DynamicVector<RealType>& x) const = 0; |
| 72 |
}; |
| 73 |
} |
| 74 |
|
| 75 |
#endif |